This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185158 #44 Jul 02 2018 16:11:48 %S A185158 1,1,0,1,0,1,1,0,1,1,1,0,1,2,2,1,0,1,2,3,2,1,0,1,3,5,5,3,1,0,1,3,7,8, %T A185158 7,3,1,0,1,4,9,14,14,9,4,1,0,1,4,12,20,25,20,12,4,1,0,1,5,15,30,42,42, %U A185158 30,15,5,1,0,1,5,18,40,66,75,66,40,18,5,1,0,1,6,22,55,99,132,132,99,55,22,6,1,0,1,6,26,70,143,212,245,212,143,70,26,6,1 %N A185158 Triangular array read by rows: T(n,k) (n>=1, 0<=k<=n-1, except 0<=k<=1 when n=1) = coefficient of x^k in expansion of (1/n)*Sum_{d|n} (mobius(d)*(1+x^d)^(n/d)). %C A185158 T(n,k) is the number of binary Lyndon words of length n containing k ones. - _Joerg Arndt_, Oct 21 2012 %H A185158 G. C. Greubel, <a href="/A185158/b185158.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A185158 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 18.3.1 "Binary necklaces with fixed density", p. 382. %H A185158 Romeo Meštrović, <a href="https://arxiv.org/abs/1804.00992">Different classes of binary necklaces and a combinatorial method for their enumerations</a>, arXiv:1804.00992 [math.CO], 2018. %H A185158 Pieter Moree, <a href="http://dx.doi.org/10.1016/j.disc.2005.03.004">The formal series Witt transform</a>, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. See Example 1. %F A185158 T(n,k) = 1/n * sum( d divides gcd(n,k), mu(d) * C(n/d,k/d) ). - _Joerg Arndt_, Oct 21 2012 %F A185158 The prime rows are given by (1+x)^p/p, rounding non-integer coefficients to 0, e.g., (1+x)^2/2 = .5 + x + .5 x^2 gives (0,1,0), row 2 below. - _Tom Copeland_, Oct 21 2014 %e A185158 The first few polynomials are: %e A185158 1+x %e A185158 x %e A185158 x+x^2 %e A185158 x+x^2+x^3 %e A185158 x+2*x^2+2*x^3+x^4 %e A185158 x+2*x^2+3*x^3+2*x^4+x^5 %e A185158 x+3*x^2+5*x^3+5*x^4+3*x^5+x^6 %e A185158 ... %e A185158 The triangle begins: %e A185158 [ 1] 1, 1, %e A185158 [ 2] 0, 1, %e A185158 [ 3] 0, 1, 1, %e A185158 [ 4] 0, 1, 1, 1, %e A185158 [ 5] 0, 1, 2, 2, 1, %e A185158 [ 6] 0, 1, 2, 3, 2, 1, %e A185158 [ 7] 0, 1, 3, 5, 5, 3, 1, %e A185158 [ 8] 0, 1, 3, 7, 8, 7, 3, 1, %e A185158 [ 9] 0, 1, 4, 9, 14, 14, 9, 4, 1, %e A185158 [10] 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, %e A185158 [11] 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, %e A185158 [12] 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, %e A185158 [13] 0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, %e A185158 [14] 0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1 %e A185158 ... %p A185158 with(numtheory); %p A185158 W:=r->expand((1/r)*add(mobius(d)*(1+x^d)^(r/d), d in divisors(r))); %p A185158 for n from 1 to 14 do %p A185158 lprint(W(n)); %p A185158 od: %p A185158 for n from 1 to 14 do %p A185158 lprint(seriestolist(series(W(n),x,50))); %p A185158 od: %t A185158 T[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#] Binomial[n/#, k/#]&]/n; Table[T[n, k], {n, 1, 14}, {k, 0, Max[1, n-1]}] // Flatten (* _Jean-François Alcover_, Dec 02 2015 *) %o A185158 (PARI) %o A185158 p(n) = if(n<=0, n==0, 'a0 + 1/n * sumdiv(n, d, moebius(d)*(1+x^d)^(n/d) )); %o A185158 /* print triangle: */ %o A185158 for (n=1,17, v=Vec( polrecip(Pol(p(n),x)) ); v[1]-='a0; print(v) ); %o A185158 /* _Joerg Arndt_, Oct 21 2012 */ %o A185158 (PARI) %o A185158 T(n,k) = 1/n * sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d,k/d) ); %o A185158 /* print triangle: */ %o A185158 { for (n=1, 17, for (k=0, max(1,n-1), print1(T(n,k),", "); ); print(); ); } %o A185158 /* _Joerg Arndt_, Oct 21 2012 */ %Y A185158 Two other versions of this triangle are in A051168 and A092964. %K A185158 nonn,tabf %O A185158 1,14 %A A185158 _N. J. A. Sloane_, Jan 23 2012