This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185180 #35 Feb 16 2025 08:33:13 %S A185180 1,2,3,5,4,6,9,7,8,10,14,12,11,13,15,20,18,16,17,19,21,27,25,23,22,24, %T A185180 26,28,35,33,31,29,30,32,34,36,44,42,40,38,37,39,41,43,45,54,52,50,48, %U A185180 46,47,49,51,53,55,65,63,61,59,57,56,58,60,62,64,66,77,75 %N A185180 Enumeration table T(n,k) by antidiagonals. The order of the list is symmetrical movement from center to edges diagonal. %C A185180 The natural numbers are grouped in chunks of 1, 2, 3, 4,... as (1), (2,3), (4,5,6), (7,8,9,10), etc and each group fills a diagonal in the table. The smallest number in a group is in A000124, the largest in A000217. Numbers in a group are placed on free spots as close as possible to the middle of the diagonal, given preference to the smaller row numbers in the table if there is a draw. %C A185180 The resulting array is apparently a transposed version of A064789 (if this was also written as an array). %C A185180 The order of the list table T(n,k): %C A185180 if n is odd: %C A185180 T (floor(n+1)/2,floor(n+1)/2), T(floor(n+1)/2-1,floor(n+1)/2+1), T(floor(n+1)/2+1,floor(n+1)/2-1),...T(1,n), T(n,1) %C A185180 if n is even: %C A185180 T(floor(n+1)/2-1,floor(n+1)/2+1), T(floor(n+1)/2+1,floor(n+1)/2-1),...T(1,n), T(n,1). %C A185180 Permutation of the natural numbers. %C A185180 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %H A185180 Boris Putievskiy, <a href="/A185180/b185180.txt">Rows n = 1..140 of triangle, flattened</a> %H A185180 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %H A185180 Eric W. Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a> %H A185180 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A185180 a(n) = (i*(i+1) + (j-1)*(j+2*i-4))/2, if j<=i, a(n)=(i*(i+1) + (j-1)*(j+2*i-4))/2 +2*(j-i)-1, if j>i, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. %e A185180 The start of the sequence as table: %e A185180 1....2....5....9...14...20...27 ... %e A185180 3....4....7...12...18...25...33 ... %e A185180 6....8...11...16...23...31...40 ... %e A185180 10..13...17...22...29...38...48 ... %e A185180 15..19...24...30...37...46...57 ... %e A185180 21..26...32...39...47...56...67 ... %e A185180 28..34...41...49...58...68...79 ... %e A185180 ... %e A185180 The start of the sequence as triangle array read by rows: %e A185180 1; %e A185180 2, 3; %e A185180 5, 4, 6; %e A185180 9, 7, 8, 10; %e A185180 14, 12, 11, 13, 15; %e A185180 20, 18, 16, 17, 19, 21; %e A185180 27, 25, 23, 22, 24, 26, 28; %e A185180 . . . %e A185180 Row number k (k > 1) of the triangle contains a permutation of the set of k numbers from (k^2-k+2)/2, (k^2-k+2)/2 + 1 ,...up to (k^2+k-2)/2 + 1, namely (k^2+k-2)/2, (k^2+k-2)/2 -2,...,(k^2-k+2)/2, (k^2-k+2)/2 + 2,..., (k^2+k-2)/2-1, (k^2+k-2)/2+1. %t A185180 a[n_] := Module[{i, j, t}, i = n - t(t+1)/2; j = (t^2 + 3t + 4)/2 - n; t = Floor[(-1 + Sqrt[8n - 7])/2]; If[j <= i, (i(i+1) + (j-1)(j + 2i - 4))/2, (i(i+1) + (j-1)(j + 2i - 4))/2 + 2(j-i) - 1]]; %t A185180 Array[a, 68] (* _Jean-François Alcover_, Nov 21 2018, from Python *) %o A185180 (Python) %o A185180 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A185180 i=n-t*(t+1)/2 %o A185180 j=(t*t+3*t+4)/2-n %o A185180 if j<=i: %o A185180 m=(i*(i+1) + (j-1)*(j+2*i-4))/2 %o A185180 else: %o A185180 m=(i*(i+1) + (j-1)*(j+2*i-4))/2 +2*(j-i)-1 %Y A185180 Cf. A056011, A056023, A057027, A057028, A064578, A194981, A194982, A188568. %K A185180 nonn,tabl %O A185180 1,2 %A A185180 _Boris Putievskiy_, Dec 26 2012