A185256 Stanley Sequence S(0,3).
0, 3, 4, 7, 9, 12, 13, 16, 27, 30, 31, 34, 36, 39, 40, 43, 81, 84, 85, 88, 90, 93, 94, 97, 108, 111, 112, 115, 117, 120, 121, 124, 243, 246, 247, 250, 252, 255, 256, 259, 270, 273, 274, 277, 279, 282, 283, 286, 324, 327, 328, 331, 333, 336, 337, 340, 351, 354, 355, 358, 360, 363
Offset: 1
Keywords
Examples
After [0, 3, 4, 7, 9] the next term cannot be 10 or we would have the 3-term A.P. 4,7,10; it cannot be 11 because of 7,9,11; but 12 is OK.
References
- R. K. Guy, Unsolved Problems in Number Theory, E10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2048
- P. Erdos et al., Greedy algorithm, arithmetic progressions, subset sums and divisibility, Discrete Math., 200 (1999), 119-135.
- J. L. Gerver and L. T. Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp., 33 (1979), 1353-1359.
- R. A. Moy, On the growth of the counting function of Stanley sequences, arXiv:1101.0022 [math.NT], 2010-2012.
- R. A. Moy, On the growth of the counting function of Stanley sequences, Discrete Math., 311 (2011), 560-562.
- A. M. Odlyzko and R. P. Stanley, Some curious sequences constructed with the greedy algorithm, 1978.
- S. Savchev and F. Chen, A note on maximal progression-free sets, Discrete Math., 306 (2006), 2131-2133.
- Index entries for non-averaging sequences
Crossrefs
Programs
-
Maple
# Stanley Sequences, Discrete Math. vol. 311 (2011), see p. 560 ss:=proc(s1,M) local n,chvec,swi,p,s2,i,j,t1,mmm; t1:=nops(s1); mmm:=1000; s2:=Array(1..t1+M,s1); chvec:=Array(0..mmm); for i from 1 to t1 do chvec[s2[i]]:=1; od; # Get n-th term: for n from t1+1 to t1+M do # do 1 # Try i as next term: for i from s2[n-1]+1 to mmm do # do 2 swi:=-1; # Test against j-th term: for j from 1 to n-2 do # do 3 p:=s2[n-j]; if 2*p-i < 0 then break; fi; if chvec[2*p-i] = 1 then swi:=1; break; fi; od; # od 3 if swi=-1 then s2[n]:=i; chvec[i]:=1; break; fi; od; # od 2 if swi=1 then ERROR("Error, no solution at n = ",n); fi; od; # od 1; [seq(s2[i],i=1..t1+M)]; end; ss([0,3],80);
-
Mathematica
ss[s1_, M_] := Module[{n, chvec, swi, p, s2, i, j, t1, mmm}, t1 = Length[s1]; mmm = 1000; s2 = Table[s1, {t1 + M}] // Flatten; chvec = Array[0&, mmm]; For[i = 1, i <= t1, i++, chvec[[s2[[i]] ]] = 1]; (* get n-th term *) For[n = t1+1, n <= t1 + M, n++, (* try i as next term *) For[i = s2[[n-1]] + 1, i <= mmm, i++, swi = -1; (* test against j-th term *) For[j = 1, j <= n-2, j++, p = s2[[n - j]]; If[2*p - i < 0, Break[] ]; If[chvec[[2*p - i]] == 1, swi = 1; Break[] ] ]; If[swi == -1, s2[[n]] = i; chvec[[i]] = 1; Break[] ] ]; If[swi == 1, Print["Error, no solution at n = ", n] ] ]; Table[s2[[i]], {i, 1, t1 + M}] ]; ss[{0, 3}, 80] (* Jean-François Alcover, Sep 10 2013, translated from Maple *)
-
PARI
A185256(n,show=1,L=3,v=[0,3], D=v->v[2..-1]-v[1..-2])={while(#v
1||next(2), 2); break)); if(type(show)=="t_VEC", v, v[n])} \\ 2nd (optional) arg: zero = silent, nonzero = verbose, vector (e.g. [] or [1]) = get the whole list [a(1..n)] as return value, else just a(n). - M. F. Hasler, Jan 18 2016
Comments