This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185280 #20 Nov 26 2024 15:17:05 %S A185280 8,8,2,5,4,2,4,0,0,6,1,0,6,0,6,3,7,3,5,8,5,8,2,5,7,2,8,4,7,1,9,9,0,7, %T A185280 6,3,9,3,0,7,5,8,9,9,4,9,1,8,6,2,1,8,8,1,9,5,7,0,5,2,9,3,4,8,2,8,4,8, %U A185280 7,0,6,8,1,8,6,7,4,6,7,2,9,9,9,1,9,7,2,4,4,7,4,1,5,8,7,0,2,2,3,5,5,4,5,9,3 %N A185280 Decimal expansion of a constant appearing in the solution of Polya's 2D drunkard problem. %H A185280 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; p. 425-426. %F A185280 1 + Sum_{n>=1} binomial(2*n, n)^2/16^n - 1/(Pi*n). %F A185280 Equals 1 + (4*log(2) - Pi)/Pi. %F A185280 Equals 4*log(2)/Pi. - _Michel Marcus_, Jul 28 2016 %e A185280 0.882542400610606373585825728471990763930758994918621881957052934828487068186... %t A185280 1+(4*Log[2]-Pi)/Pi // N[#, 100]& // RealDigits // First %o A185280 (PARI) 4*log(2)/Pi \\ _Michel Marcus_, Jul 28 2016 %Y A185280 Cf. A016639, A163973. %K A185280 nonn,cons,easy %O A185280 0,1 %A A185280 _Jean-François Alcover_, Apr 23 2013 %E A185280 a(99) corrected by _Georg Fischer_, Jul 12 2021