cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185285 Triangle T(n,k), read by rows, given by (0, 2, 3, 4, 6, 6, 9, 8, 12, 10, 15, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 6, 1, 0, 74, 52, 12, 1, 0, 730, 570, 160, 20, 1, 0, 9002, 7600, 2430, 380, 30, 1, 0, 133210, 119574, 42070, 7630, 770, 42, 1, 0, 2299754, 2170252, 822696, 166320, 19740, 1400, 56, 1, 0, 45375130, 44657106, 17985268, 3956568, 528780, 44604, 2352, 72, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 22 2011

Keywords

Comments

The Bell transform of A004123(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins :
1
0, 1
0, 2, 1
0, 10, 6, 1
0, 74, 52, 12, 1
0, 730, 570, 160, 20, 1
0, 9002, 7600, 2430, 380, 30, 1
0, 133210, 119574, 42070, 7630, 770, 42, 1
		

Crossrefs

Row sums are A136727.

Programs

  • Mathematica
    (* The function BellMatrix is defined in A264428. *)
    a4123[n_] := If[n == 1, 1, PolyLog[-n+1, 2/3]/3];
    rows = 10;
    M = BellMatrix[a4123[#+1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2019 *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: A004123(n+1), 10) # Peter Luschny, Jan 18 2016

Extensions

More terms from Jean-François Alcover, Jun 25 2019