A185285 Triangle T(n,k), read by rows, given by (0, 2, 3, 4, 6, 6, 9, 8, 12, 10, 15, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938.
1, 0, 1, 0, 2, 1, 0, 10, 6, 1, 0, 74, 52, 12, 1, 0, 730, 570, 160, 20, 1, 0, 9002, 7600, 2430, 380, 30, 1, 0, 133210, 119574, 42070, 7630, 770, 42, 1, 0, 2299754, 2170252, 822696, 166320, 19740, 1400, 56, 1, 0, 45375130, 44657106, 17985268, 3956568, 528780, 44604, 2352, 72, 1
Offset: 0
Examples
Triangle begins : 1 0, 1 0, 2, 1 0, 10, 6, 1 0, 74, 52, 12, 1 0, 730, 570, 160, 20, 1 0, 9002, 7600, 2430, 380, 30, 1 0, 133210, 119574, 42070, 7630, 770, 42, 1
Programs
-
Mathematica
(* The function BellMatrix is defined in A264428. *) a4123[n_] := If[n == 1, 1, PolyLog[-n+1, 2/3]/3]; rows = 10; M = BellMatrix[a4123[#+1]&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2019 *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: A004123(n+1), 10) # Peter Luschny, Jan 18 2016
Extensions
More terms from Jean-François Alcover, Jun 25 2019
Comments