A185286 Triangle T(n,k) is the number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at k.
1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 5, 6, 3, 3, 3, 1, 11, 11, 13, 17, 13, 7, 6, 4, 1, 24, 41, 52, 44, 43, 40, 25, 14, 10, 5, 1, 93, 120, 152, 176, 161, 126, 107, 80, 45, 25, 15, 6, 1, 272, 421, 550, 559, 561, 524, 412, 303, 227, 146, 77, 41, 21, 7, 1, 971, 1381, 1813, 2056, 2045, 1835, 1615, 1309, 938, 648, 435, 251, 126, 63, 28, 8, 1
Offset: 0
Examples
The table starts: 1 0,1,1 2,1,1,2,1 2,5,6,3,3,3,1
Links
- Robert Israel, Table of n, a(n) for n = 0..10200
Crossrefs
Programs
-
Maple
T:= proc(n,k) option remember; if k < 0 or k > 2*n then return 0 fi; procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k+1)+procname(n-1,k+2) end proc: T(0,0):= 1: for nn from 0 to 10 do seq(T(nn,k),k=0..2*nn) od; # Robert Israel, Dec 19 2017
-
Mathematica
T[n_, k_] := T[n, k] = If[k < 0 || k > 2n, 0, T[n-1, k-2] + T[n-1, k-1] + T[n-1, k+1] + T[n-1, k+2]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, 2n}] // Flatten (* Jean-François Alcover, Aug 19 2022, after Robert Israel *)
-
PARI
flip(v)=vector(#v,i,v[#v+1-i]) ar(n)={local(p);p=1; for(k=1,n,p*=1+x+x^3+x^4;p=(p-polcoeff(p,0)-polcoeff(p,1)*x)/x^2); flip(Vec(p))}
Comments