cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A191588 T(m,n) is the number of ways to split two strings of length m and n, respectively, into the same number of nonempty parts such that at least one of the corresponding parts has length 1 and such that the parts have at most size 2.

Original entry on oeis.org

1, 1, 1, 0, 2, 3, 0, 1, 3, 7, 0, 0, 3, 7, 13, 0, 0, 1, 6, 17, 27, 0, 0, 0, 4, 14, 36, 61, 0, 0, 0, 1, 10, 35, 77, 133, 0, 0, 0, 0, 5, 25, 81, 173, 287, 0, 0, 0, 0, 1, 15, 65, 183, 387, 633, 0, 0, 0, 0, 0, 6, 41, 161, 421, 857, 1407, 0, 0, 0, 0, 0, 1, 21, 112, 385, 969, 1911, 3121, 0, 0, 0, 0, 0, 0, 7, 63, 294, 918, 2211, 4287, 6943, 0, 0, 0, 0, 0, 0, 1, 28, 182, 742, 2181, 5040, 9619, 15517, 0, 0
Offset: 1

Views

Author

Steffen Eger, Jun 09 2011

Keywords

Comments

Diagonal appears to be A098479. - Joerg Arndt, Jun 09 2011
T(m,n) is the number of lattice paths from (0,0) to (m,n) with steps in {(1,1),(1,2),(2,1)}. - Steffen Eger, Sep 25 2012

Examples

			1
1 1
0 2 3
0 1 3 7
0 0 3 7 13
0 0 1 6 17 27
0 0 0 4 14 36 61
0 0 0 1 10 35 77 133
0 0 0 0  5 25 81 173 287
0 0 0 0  1 15 65 183 387 633
0 0 0 0  0  6 41 161 421 857 1407
0 0 0 0  0  1 21 112 385 969 1911 3121
0 0 0 0  0  0  7  63 294 918 2211 4287  6943
0 0 0 0  0  0  1  28 182 742 2181 5040  9619 15517
0 0 0 0  0  0  0   8  92 504 1842 5134 11508 21602 34755
Examples:
For m=3, n=2, we have
  x xx     xx x
  y  y      y y
For m=3, n=3, we have
  x xx     xx x   x x x
  yy y      y yy  y y y
For m=4, n=4, we have
  x xx x   x xx x   xx x x   xx x x   x x xx  x x xx   x x x x
  yy y y   y y yy   y yy y    y y yy  y yy y  yy y y   y y y y
		

Crossrefs

Cf. A180091, A185287, A098479 (diagonal).

Programs

  • Mathematica
    t[m_, n_] /; m >= n := t[m, n] = Binomial[n, 2n - m] + Sum[Binomial[k, 2k - n]*Binomial[2k - n, 3k - n - m], {k, 2, n-1}]; t[m_, n_] /; m < n := t[m, n]; Table[t[n, m], {n, 1, 14}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2013, from formula *)

Formula

For m >= n: T(m,n) = C(n,2*n-m) + Sum_{k=2..n-1} C(k,2*k-n)*C(2*k-n,3*k-n-m) (note: C(2*k-n,3*k-n-m) = C(2*k-n,m-k)) where C(n,k) = binomial(n,k) for n >= k and 0 otherwise.
Symmetrically extended by T(n,m) = T(m,n).
Showing 1-1 of 1 results.