This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185301 #11 Mar 30 2012 18:37:25 %S A185301 1,1,3,5,14,20,59,83,229,350,878,1302,3479,5068,12640,19357,47547, %T A185301 71173,175029,262445,635297,966680,2288213,3470143,8266788,12507003, %U A185301 29283071,44756825,104067224,158535387,367088494,559952784,1287857188,1971948577 %N A185301 G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n)^k * x^(n*k) / n ). %F A185301 Logarithmic derivative yields A185302. %e A185301 G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 14*x^4 + 20*x^5 + 59*x^6 + 83*x^7 +... %e A185301 such that, by definition: %e A185301 log(A(x)) = (x + x^2 + x^3 + x^4 +...+ x^k +...)/1 %e A185301 + (3*x^2 + 9*x^4 + 27*x^6 + 81*x^8 +...+ 3^k*x^(2*k) +...)/2 %e A185301 + (4*x^3 + 16*x^6 + 64*x^9 + 256*x^12 +...+ 4^k*x^(3*k) +...)/3 %e A185301 + (7*x^4 + 49*x^8 + 343*x^12 + 2401*x^16 +...+ 7^k*x^(4*k) +...)/4 +... %e A185301 = x + 5*x^2/2 + 7*x^3/3 + 29*x^4/4 + 11*x^5/5 + 131*x^6/6 +...+ A185302(n)*x^n/n +... %o A185301 (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=1, n\m, sigma(m)^k*x^(m*k)/m),x*O(x^n))), n)} %Y A185301 Cf. A185302. %K A185301 nonn %O A185301 0,3 %A A185301 _Paul D. Hanna_, Jan 25 2012