cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185311 Keränen's abelian squarefree endomorphism of size 85 on the symbols {1,2,3,4}.

This page as a plain text file.
%I A185311 #24 Mar 02 2020 18:51:49
%S A185311 1,2,3,1,3,4,3,2,3,4,3,1,4,3,4,2,4,1,2,1,3,1,2,1,4,2,1,2,3,2,4,2,3,2,
%T A185311 1,3,2,3,4,3,1,3,2,1,2,4,1,2,1,3,1,4,3,2,3,4,3,1,3,4,2,3,2,1,3,2,3,4,
%U A185311 3,1,3,4,3,2,4,3,4,1,4,2,4,3,2,3,1
%N A185311 Keränen's abelian squarefree endomorphism of size 85 on the symbols {1,2,3,4}.
%D A185311 V. Keränen. Abelian squares are avoidable on 4 letters. In W. Kuich, editor, Proc. ICALP '92, Lecture Notes in Comp. Sci., 623:4152. Springer-Verlag, Berlin, 1992.
%D A185311 V. Keränen. Mathematica in research of avoidable patterns in strings, In V. Keränen and P. Mitic, editors, Mathematics with Vision, Proc. First International Mathematica Symposium (IMS '95, Southampton, England), 259266. Computational Mechanics Publications, 1995.
%D A185311 V. Keränen. The avoidability of regularities in strings (in Finnish). Arkhimedes, 47(1):7179, 1995.
%D A185311 V. Keränen. On abelian repetition-free words. In V. Demidov, editor, Proc. IAS '96, 814. Murmansk State Pedagogical Institute, Murmansk, 1996.
%D A185311 V. Keränen. Repetition-free strings and computer algebra (in Finnish). In C. Gefwert and P. Orponen and J. Seppänen, editors, Logic, Mathematics and the Computer, Proc. Finnish Artificial Intelligence Society, 14:250257. Hakapaino, Helsinki, 1996.
%D A185311 T. Laakso, Musical rendering of an infinite repetition-free string. In C. Gefwert and P. Orponen and J. Seppänen, editors, Logic, Mathematics and the Computer, Proc. Finnish Artificial Intelligence Society, 14:292-297. Hakapaino, Helsinki, 1996.
%H A185311 Arturo Carpi, <a href="https://doi.org/10.1016/S0166-218X(97)88002-X">On the number of abelian square-free words on four letters</a>, Discrete Appl. Math. 81 (1998), no. 1-3, 155-167.
%H A185311 V. Keränen, <a href="https://web.archive.org/web/20130724103724/http://south.rotol.ramk.fi/keranen/ias2002/NewAbelianSquare-FreeDT0L-LanguagesOver4Letters.nb">New Abelian Square-Free DT0L-Languages over 4 Letters</a>
%Y A185311 Cf. A007413, A185312.
%K A185311 nonn,fini,full
%O A185311 1,2
%A A185311 _N. J. A. Sloane_, Jan 25 2012