This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185321 #49 Aug 06 2024 10:29:02 %S A185321 8911,1024651,1152271,5481451,10267951,14913991,64377991,67902031, %T A185321 139952671,178482151,368113411,395044651,612816751,652969351, %U A185321 743404663,1419339691,1588247851,2000436751,2199931651,2560600351,3102234751,3215031751,3411338491,4340265931 %N A185321 Carmichael numbers congruent to 3 modulo 4. %C A185321 Most Carmichael numbers are congruent to 1 modulo 4. %C A185321 This is a subsequence of A167181: if a prime p | a(n), (p-1) | (a(n)-1) by Korselt's criterion. But a(n)-1 is 2 mod 4, so p-1 cannot be 0 mod 4. Hence all primes dividing a(n) are 3 mod 4. - _Charles R Greathouse IV_, Jan 27 2012 %C A185321 Pinch call the intersection of A007304 with this sequence C3, which are precisely those numbers which pass a Rabin-Miller test to a random base with probability 1/4. The first member of this sequence not in C3 is a(16) = 7 * 11 * 19 * 103 * 9419. - _Charles R Greathouse IV_, Jan 27 2012 %C A185321 Wright proves that this sequence is infinite, and in particular there are more than x^(k/(log log log x)^2) terms up to x for some k and large enough x. - _Charles R Greathouse IV_, Nov 09 2015 %H A185321 Donovan Johnson and Charles R Greathouse IV, <a href="/A185321/b185321.txt">Table of n, a(n) for n = 1..15447</a> (first 6838 terms from Johnson) %H A185321 Charles R Greathouse IV, <a href="/A185321/a185321.gp.txt">GP script to compute terms</a> %H A185321 Charles R Greathouse IV, <a href="/A185321/a185321_1.gp.txt">Alternate GP script to compute terms</a> %H A185321 R. G. E. Pinch, <a href="https://citeseerx.ist.psu.edu/pdf/276fe2afb2d34bbc05a740eb1641b76f16cad625">The Carmichael numbers up to 10^15</a>, Mathematics of Computation 61:203 (1993), pp. 381-391. %H A185321 Thomas Wright, <a href="http://arxiv.org/abs/1212.5850">Infinitely many Carmichael numbers in arithmetic progressions</a>, Bull. London Math. Soc. 45:5 (2013), pp. 943-952. %t A185321 Select[4Range[10^4] + 3, (!PrimeQ[#] && IntegerQ[(# - 1)/CarmichaelLambda[#]]) &] %o A185321 (PARI) Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1 %o A185321 p=5;forprime(q=7,1e7,forstep(n=if(p%4==3,p+4,p+2),q-2,4,if(Korselt(n),print1(n", ")));p=q) \\ _Charles R Greathouse IV_, Jan 27 2012 %Y A185321 Subsequence of A002997, A167181 (and hence A004614), A026424, and A177884. %K A185321 nonn %O A185321 1,1 %A A185321 _José María Grau Ribas_, Jan 27 2012 %E A185321 a(7)-a(40) from _Charles R Greathouse IV_, Jan 27 2012