This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185326 #30 Dec 01 2024 10:03:50 %S A185326 1,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,6,6,8,9,11,12,16,17,21,24,29,32, %T A185326 40,44,53,60,71,80,96,107,126,143,167,188,221,248,288,326,376,424,491, %U A185326 552,634,716,819,922,1056,1187,1353,1523,1730,1944,2209,2478,2806,3151 %N A185326 Number of partitions of n into parts >= 6. %C A185326 a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 6 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles. %C A185326 By removing a single part of size 6, an A026799 partition of n becomes an A185326 partition of n - 6. Hence this sequence is essentially the same as A026799. %H A185326 Jason Kimberley, <a href="/A185326/b185326.txt">Table of n, a(n) for n = 0..998</a> %H A185326 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a> %F A185326 G.f.: Product_{m>=6} 1/(1-x^m). %F A185326 a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-6) + p(n-7) - p(n-8) - p(n-9) - p(n-10) + p(n-13) + p(n-14) - p(n-15) where p(n) = A000041(n). %F A185326 a(n) = A185226(n) + A185116(n). %F A185326 This sequence is the Euler transformation of A185116. %F A185326 a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - _Vaclav Kotesovec_, Jun 02 2018 %F A185326 G.f.: Sum_{k>=0} x^(6*k) / Product_{j=1..k} (1 - x^j). - _Ilya Gutkovskiy_, Nov 28 2020 %F A185326 G.f.: 1 + Sum_{n >= 1} x^(n+5)/Product_{k = 0..n-1} (1 - x^(k+6)). - _Peter Bala_, Dec 01 2024 %p A185326 seq(coeff(series(1/mul(1-x^(m+6), m = 0..80), x, n+1), x, n), n = 0..70); # _G. C. Greubel_, Nov 03 2019 %t A185326 CoefficientList[Series[1/QPochhammer[x^6, x], {x, 0, 75}], x] (* _G. C. Greubel_, Nov 03 2019 *) %o A185326 (Magma) A185326 := func<n|#RestrictedPartitions(n,{6..n})>; %o A185326 (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+6): m in [0..80]]) )); // _G. C. Greubel_, Nov 03 2019 %o A185326 (PARI) my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+6))) \\ _G. C. Greubel_, Nov 03 2019 %o A185326 (Sage) %o A185326 def A185326_list(prec): %o A185326 P.<x> = PowerSeriesRing(ZZ, prec) %o A185326 return P( 1/product((1-x^(m+6)) for m in (0..80)) ).list() %o A185326 A185326_list(70) # _G. C. Greubel_, Nov 03 2019 %Y A185326 2-regular simple graphs with girth at least 6: A185116 (connected), A185226 (disconnected), this sequence (not necessarily connected). %Y A185326 Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), this sequence (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). %Y A185326 Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). %K A185326 nonn,easy %O A185326 0,13 %A A185326 _Jason Kimberley_, Jan 30 2012