This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185331 #36 Mar 04 2021 19:13:12 %S A185331 1,-1,1,0,-1,1,1,-1,-1,1,0,2,-2,-1,1,-1,1,3,-3,-1,1,0,-3,3,4,-4,-1,1, %T A185331 1,-1,-6,6,5,-5,-1,1,0,4,-4,-10,10,6,-6,-1,1,-1,1,10,-10,-15,15,7,-7, %U A185331 -1,1,0,-5,5,20,-20,-21,21,8,-8,-1,1 %N A185331 Riordan array ((1-x+x^2)/(1+x^2), x/(1+x^2)). %C A185331 Triangle T(n,k), read by rows, given by (-1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. %H A185331 G. C. Greubel, <a href="/A185331/b185331.txt">Table of n, a(n) for the first 100 rows, flattened</a> %F A185331 T(n,k) = T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(0,1) = -1, T(0,2) = 0. %F A185331 G.f.: (1-x+x^2)/(1-y*x+x^2). %F A185331 Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A184334(n), A163805(n), A000007(n), A028310(n), A025169(n-1), A005320(n) (n>0) for x = -1, 0, 1, 2, 3, 4 respectively. %F A185331 T(n,n) = 1, T(n+1,n) = -1, T(n+2,n) = -n, T(n+3,n) = n+1, T(n+4,n) = n(n+1)/2 = A000217(n). %F A185331 T(2n,2k) = (-1)^(n-k) * A128908(n,k), T(2n+1,2k+1) = -T(2n+1,2k) = A129818(n,k), T(2n+2,2k+1) = (-1)*A053122(n,k). - _Philippe Deléham_, Feb 09 2012 %e A185331 Triangle begins: %e A185331 1; %e A185331 -1, 1; %e A185331 0, -1, 1; %e A185331 1, -1, -1, 1; %e A185331 0, 2, -2, -1, 1; %e A185331 -1, 1, 3, -3, -1, 1; %e A185331 0, -3, 3, 4, -4, -1, 1; %e A185331 1, -1, -6, 6, 5, -5, -1, 1; %e A185331 0, 4, -4, -10, 10, 6, -6, -1, 1; %e A185331 -1, 1, 10, -10, -15, 15, 7, -7, -1, 1; %e A185331 0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1; %e A185331 1, -1, -15, 15, 35, -35, -28, 28, 9, -9, -1, 1; %t A185331 CoefficientList[Series[CoefficientList[Series[(1 - x + x^2)/(1 - y*x + x^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* _G. C. Greubel_, Jun 27 2017 *) %Y A185331 Cf. A206474 (unsigned version). %Y A185331 Cf. A007318, A053122, A078812, A085478, A128908, A129818, %K A185331 easy,sign,tabl %O A185331 0,12 %A A185331 _Philippe Deléham_, Feb 08 2012