This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185336 #10 Dec 04 2019 21:03:00 %S A185336 1,0,0,0,0,0,0,1,1,5,32,385,7574,181227,4624502,122090545,3328929960, %T A185336 93990692632,2754222605808 %N A185336 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6. %C A185336 The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth. %H A185336 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a> %F A185336 Euler transformation of A014374. %t A185336 A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {_, _}][[All, 2]]; %t A185336 etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b]; %t A185336 a = etr[A014374[[# + 1]]&]; %t A185336 a /@ Range[0, Length[A014374] - 1] (* _Jean-François Alcover_, Dec 04 2019 *) %Y A185336 3-regular simple graphs with girth at least 6: A014374 (connected), A185236 (disconnected), this sequence (not necessarily connected). %Y A185336 Not necessarily connected k-regular simple graphs with girth at least 6: A185326 (k=2), this sequence (k=3). %Y A185336 Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), A185335 (g=5), this sequence (g=6). %Y A185336 Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6). %K A185336 nonn,more,hard %O A185336 0,10 %A A185336 _Jason Kimberley_, Jan 28 2012 %E A185336 a(18) from A014374 from _Jean-François Alcover_, Dec 04 2019