cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185345 Numbers that are not the sum of two rational cubes.

This page as a plain text file.
%I A185345 #43 May 24 2023 07:33:46
%S A185345 3,4,5,10,11,14,18,21,23,24,25,29,32,36,38,39,40,41,44,45,46,47,52,55,
%T A185345 57,59,60,66,73,74,76,77,80,81,82,83,88,93,95,99,100,101,102,108,109,
%U A185345 111,112,113,116,118,119,121,122,129,131,135,137,138,144,145,146,147
%N A185345 Numbers that are not the sum of two rational cubes.
%D A185345 Henri Cohen, Number Theory - Volume I: Tools and Diophantine Equations, Springer-Verlag, 2007, pp. 378-379.
%D A185345 Yu. I. Manin, A. A. Panchishkin, Introduction to Modern Number Theory: Fundamental Problems, Ideas and Theories (Second Edition), Springer-Verlag, 2006, pp. 43-46.
%H A185345 Arkadiusz Wesolowski, <a href="/A185345/b185345.txt">Table of n, a(n) for n = 1..10000</a>
%H A185345 H. Nakao, <a href="http://www.kaynet.or.jp/~kay/misc/nna10000.html">[2017.11.14] Rational Points on Elliptic Curves: x^3+y^3=n (n in [1..10000])</a>. This sequence consists of the numbers that have a dash in the corresponding cell of the next-to-last column of the table.
%H A185345 Ernst S. Selmer, <a href="http://dx.doi.org/10.1007/BF02395746">The diophantine equation ax^3 + by^3 + cz^3 = 0</a>, Acta Math. 85 (1951), pp. 203-362.
%H A185345 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%e A185345 22 can be expressed as (17299/9954)^3 + (25469/9954)^3, so 22 is not in the sequence.
%t A185345 (* A naive program with a few pre-computed terms from A159843 *) nmax = 122; xmax = 3000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]}& /@ FactorInteger[n]); nn = Join[{1}, Reap[Do[n = CubeFreePart[x*y*(x+y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union]; A159843 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 89, 94, 103, 107, 122}], # <= nmax &]; Complement[Range[nmax], A159843] (* _Jean-François Alcover_, Feb 10 2015 *)
%o A185345 (Magma) lst1:=[]; lst2:=[x^3+y^3: x, y in [0..5]]; for n in [1..147] do if IsZero(Rank(EllipticCurve([0, 16*n^2]))) and not n in lst2 then lst1:=Append(lst1, n); end if; end for; lst1;
%o A185345 (PARI) isok(k) = my(v=thue('x^3+1, k)); if(!(#v>0 && #select(k->k>=0, concat(v))>#v) && ellanalyticrank(ellinit([0, 16*k^2]))[1]==0, 1, 0); \\ _Arkadiusz Wesolowski_, May 21 2023
%Y A185345 Complement of A159843. One subsequence of this sequence is A022555, numbers that are not the sum of two nonnegative integer cubes.
%K A185345 nonn
%O A185345 1,1
%A A185345 _Arkadiusz Wesolowski_, Mar 17 2012