This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185359 #33 Nov 24 2020 10:25:54 %S A185359 8,16,24,32,40,48,56,64,72,80,81,88,96,104,112,120,128,136,144,152, %T A185359 160,162,168,176,184,192,200,208,216,224,232,240,243,248,256,264,272, %U A185359 280,288,296,304,312,320,324,328,336,344,352,360,368,376,384,392,400 %N A185359 Numbers k such that {m^m mod k: m >= 1} is not purely periodic. %C A185359 k is a term if and only if k = Product_{i=1..t} p_i^e_i with e_i > p_i for some i. %C A185359 A182938(a(n)) = 0. - _Reinhard Zumkeller_, Feb 18 2012 %C A185359 The asymptotic density of this sequence is 1 - Product_{p prime} 1 - 1/p^(p+1) = 0.13585792767780221591... - _Amiram Eldar_, Nov 24 2020 %H A185359 Reinhard Zumkeller, <a href="/A185359/b185359.txt">Table of n, a(n) for n = 1..10000</a> %H A185359 R. Hampel, <a href="https://doi.org/10.4064/ap-1-2-360-366">The length of the shortest period of rests of numbers n^n</a>, Ann. Polon. Math. 1 (1955), 360-366. %t A185359 j[p_,e_]:=e>p;j[n_]:={False}==Union@Module[{fa=FactorInteger[n]},Table[j[fa[[i,1]],fa[[i,2]]],{i,1,Length[fa]}]];Select[Range[1000],!j[#]&] %o A185359 (Haskell) %o A185359 a185359 n = a185359_list !! (n-1) %o A185359 a185359_list = [x | x <- [1..], or $ zipWith (<) %o A185359 (a027748_row x) (map toInteger $ a124010_row x)] %o A185359 -- _Reinhard Zumkeller_, Feb 18 2012 %Y A185359 Cf. A027748, A124010, A008590 (subsequence), A185358, A207481 (complement). %K A185359 nonn %O A185359 1,1 %A A185359 _José María Grau Ribas_, Jan 21 2012