This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185364 #20 Jul 20 2025 14:47:05 %S A185364 1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,9,6,267,3727,483012,69823723, %T A185364 14836130862 %N A185364 Not necessarily connected 6-regular simple graphs on n vertices with girth at least 4. %C A185364 First differs from A058276 at n=24. %H A185364 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_girth_ge_4">Not necessarily connected k-regular graphs with girth at least 4</a> %H A185364 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a> %F A185364 This sequence is the Euler transformation of A058276. %F A185364 a(n) = A058276(n) + A185264(n). %t A185364 A058276 = Cases[Import["https://oeis.org/A058276/b058276.txt", "Table"], {_, _}][[All, 2]]; %t A185364 (* EulerTransform is defined in A005195 *) %t A185364 EulerTransform[Rest @ A058276] (* _Jean-François Alcover_, Dec 04 2019, updated Mar 18 2020 *) %Y A185364 6-regular simple graphs with girth at least 4: A058276 (connected), A185264 (disconnected), this sequence (not necessarily connected). %Y A185364 Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: A008484 (k=2), A185334 (k=3), A185344 (k=4), A185354 (k=5), this sequence (k=6). %Y A185364 Cf. A184964. %K A185364 nonn,more,hard %O A185364 0,17 %A A185364 _Jason Kimberley_, Dec 07 2011