This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185370 #41 Mar 12 2015 21:06:21 %S A185370 1,1,1,2,0,1,0,1,3,1,0,1,0,0,1,5,1,0,0,1,0,1,0,1,0,1,0,0,1,7,2,1,0,0, %T A185370 1,0,0,1,0,1,0,0,1,0,0,0,1,11,2,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,2,1,0,0, %U A185370 1,0,0,0,0,1,0,0,0,1,15,4,1,1,0,0,0,1 %N A185370 Triangle read by rows: T(n,k) is the number of occurrences of k in the n-th region of the set of partitions of j, if 1<=n<=A000041(j). %C A185370 For the definition of "region of the set of partitions of j" see A206437. %C A185370 T(n,k) is the number of occurrences of k in the n-th region of the shell model of partitions (see A135010). %C A185370 T(n,k) is also the number of occurrences of k in the n-th row of triangles A186114, A193870, A206437 (and possibly more). %C A185370 If the length of row n is a record then the length of row n is j and also A000041(j) = n. %C A185370 If A000041(j) = n then the sum of the last A187219(j) elements of column k is A182703(j,k) and also the sum of all elements of column k is A066633(j,k). %H A185370 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a> %e A185370 First seven regions of any integer >= 5 are %e A185370 [1], [2,1], [3,1,1], [2], [4,2,1,1,1], [3], [5,2,1,1,1,1,1] (see illustrations, see also A206437). The 7th region contains five 1's, only one 2 and only one 5. There are no 3's. There are no 4's, so row 7 is [5, 1, 0, 0, 1]. %e A185370 ----------------------------------------- %e A185370 n j m k : 1 2 3 4 5 6 7 8 %e A185370 ----------------------------------------- %e A185370 1 1 1 1; %e A185370 2 2 1 1, 1; %e A185370 3 3 1 2, 0, 1; %e A185370 4 4 1 0, 1; %e A185370 5 4 2 3, 1, 0, 1; %e A185370 6 5 1 0, 0, 1; %e A185370 7 5 2 5, 1, 0, 0, 1; %e A185370 8 6 1 0, 1; %e A185370 9 6 2 0, 1, 0, 1; %e A185370 10 6 3 0, 0, 1; %e A185370 11 6 4 7, 2, 1, 0, 0, 1; %e A185370 12 7 1 0, 0, 1; %e A185370 13 7 2 0, 1, 0, 0, 1; %e A185370 14 7 3 0, 0, 0, 1; %e A185370 15 7 4 11, 2, 1, 0, 0, 0, 1; %e A185370 16 8 1 0, 1; %e A185370 17 8 2 0, 1, 0, 1; %e A185370 18 8 3 0, 0, 1; %e A185370 19 8 4 0, 2, 1, 0, 0, 1; %e A185370 20 8 5 0, 0, 0, 0, 1; %e A185370 21 8 6 0, 0, 0, 1; %e A185370 22 8 7 15, 4, 1, 1, 0, 0, 0, 1; %Y A185370 Row n has length A141285(n). Row sums give A194446. Positive terms of column 1 give A000041. %Y A185370 Cf. A006128, A066633, A135010, A182703, A186114, A187219, A193870, A206437. %K A185370 nonn,tabf %O A185370 1,4 %A A185370 _Omar E. Pol_, Jan 25 2013