cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.

This page as a plain text file.
%I A185375 #23 Sep 05 2023 08:15:20
%S A185375 0,0,1,91,966,5082,18447,53053,129948,282948,562989,1043119,1824130,
%T A185375 3040830,4868955,7532721,11313016,16556232,23683737,33201987,45713278,
%U A185375 61927138,82672359,108909669,141745044,182443660
%N A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
%C A185375 Third column (k=2) of A008958.
%H A185375 G. C. Greubel, <a href="/A185375/b185375.txt">Table of n, a(n) for n = 0..1000</a>
%H A185375 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
%F A185375 a(n) = binomial(2*n+1,5)*(10*n-17)/3.
%F A185375 From _G. C. Greubel_, Jun 28 2017: (Start)
%F A185375 G.f.: x^2*(1 + 84*x + 350*x^2 + 196*x^3 + 9*x^4)/(1 - x)^7.
%F A185375 E.g.f.: (1/90)*x^2*(45 + 1320 x + 2280 x^2 + 864 x^3 + 80 x^4)*exp(x). (End)
%F A185375 a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - _Wesley Ivan Hurt_, Apr 23 2021
%F A185375 a(n) = Sum_{1 <= i <= j <= n-1} (2*i - 1)^2 * (2*j - 1)^2. - _Peter Bala_, Sep 03 2023
%t A185375 Table[n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n - 17)/90, {n, 0, 50}] (* _G. C. Greubel_, Jun 28 2017 *)
%t A185375 LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,1,91,966,5082,18447},30] (* _Harvey P. Dale_, Oct 10 2021 *)
%o A185375 (PARI) a(n) = binomial(2*n+1,5)*(10*n-17)/3  \\ _Michel Marcus_, Jun 18 2013
%o A185375 (Magma) [n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90 : n in [0..50]]; // _Wesley Ivan Hurt_, Apr 23 2021
%Y A185375 Third column (k=2) of A008958 Triangle of central factorial numbers.
%Y A185375 Cf. A103220.
%K A185375 easy,nonn
%O A185375 0,4
%A A185375 _Wesley Transue_, Jan 21 2012