This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185384 #34 Jan 22 2020 02:42:06 %S A185384 1,2,1,5,6,2,13,24,15,3,34,84,78,32,5,89,275,340,210,65,8,233,864, %T A185384 1335,1100,510,126,13,610,2639,4893,5040,3115,1155,238,21,1597,7896, %U A185384 17080,21112,16310,8064,2492,440,34,4181,23256,57492,82908,76860,47502,19572,5184,801,55 %N A185384 A binomial transform of Fibonacci numbers. %C A185384 Triangle begins: %C A185384 1, %C A185384 2, 1, %C A185384 5, 6, 2, %C A185384 13, 24, 15, 3, %C A185384 34, 84, 78, 32, 5, %C A185384 89, 275, 340, 210, 65, 8, %C A185384 233, 864, 1335, 1100, 510, 126, 13, %C A185384 610, 2639, 4893, 5040, 3115, 1155, 238, 21, %C A185384 1597, 7896, 17080, 21112, 16310, 8064, 2492, 440, 34, %C A185384 ... %C A185384 Diagonal: a(n,n) = F(n+1). %C A185384 First column: a(n,0) = F(2n+1) (A001519). %C A185384 Row sums: Sum_{k=0..n} a(n,k) = F(3n+1) (A033887). %C A185384 Alternated row sums: Sum_{k=0..n} (-1)^k * a(n,k) = 1. %C A185384 Diagonal sums: Sum_{k=0..floor(n/2)} a(n-k,k) = A208481(n). %C A185384 Alternated diagonal sums: Sum_{k=0..floor(n/2)} (-1)^k * a(n-k,k) = F(n+3)-1 (A000071). %C A185384 Row square-sums: Sum_{k=0..n} a(n,k)^2 = A208588(n). %C A185384 Central coefficients: a(2*n,n) = binomial(2n,n)*F(3n+1) (A208473), where F(n) are the Fibonacci numbers (A000045). %C A185384 Mirror image of the triangle in A122070. - _Philippe Deléham_, Mar 13 2012 %C A185384 Subtriangle of (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 13 2012 %H A185384 G. C. Greubel, <a href="/A185384/b185384.txt">Table of n, a(n) for the first 100 rows, flattened</a> %F A185384 a(n,k) = Sum_{i=k..n} binomial(n,i)*binomial(i,k)*F(i+1). %F A185384 a(n,k) = binomial(n,i) * Sum_{i=k..n} binomial(n-k,n-i)*F(i+1). %F A185384 Explicit form: a(n,k) = binomial(n,k)*F(2*n-k+1). %F A185384 G.f.: (1-x)/(1-3*x+x^2-x*y-x^2*y-x^2*y^2). %F A185384 Recurrence: a(n+2,k+2) = 3*a(n+1,k+2) + a(n+1,k+1) - a(n,k+2) + a(n,k+1) + a(n,k). %F A185384 T(n,k) = A122070(n,n-k). - _Philippe Deléham_, Mar 13 2012 %e A185384 From _Philippe Deléham_, Mar 13 2012: (Start) %e A185384 (1, 1, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins: %e A185384 1; %e A185384 1, 0; %e A185384 2, 1, 0; %e A185384 5, 6, 2, 0; %e A185384 13, 24, 15, 3, 0; %e A185384 34, 84, 78, 32, 5, 0; %e A185384 89, 275, 340, 210, 65, 8, 0; %e A185384 233, 864, 1335, 1100, 510, 126, 13, 0; %e A185384 ... (End) %t A185384 Flatten[Table[Sum[Binomial[n,i]Binomial[i,k]Fibonacci[i+1],{i,k,n}],{n,0,20},{k,0,n}]] %t A185384 CoefficientList[Series[CoefficientList[Series[(1 - x)/(1 - 3*x + x^2 - x*y - x^2*y - x^2*y^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* _G. C. Greubel_, Jun 28 2017 *) %o A185384 (Maxima) create_list(binomial(n,k)*fib(2*n-k+1),n,0,20,k,0,n); %o A185384 (PARI) for(n=0,10, for(k=0,n, print1(sum(i=k,n, binomial(n,i) * binomial(i,k) * fibonacci(i+1)), ", "))) \\ _G. C. Greubel_, Jun 28 2017 %Y A185384 Cf. A000045, A001519, A033887, A208481, A000071, A208588, A208473. %Y A185384 Cf. A122070. %K A185384 nonn,tabl,easy %O A185384 0,2 %A A185384 _Emanuele Munarini_, Feb 29 2012