This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185385 #19 Mar 30 2012 18:37:25 %S A185385 1,3,11,61,381,2527,17559,126265,931321,7007035,53568131,414929621, %T A185385 3249392917,25684315319,204645707183,1641910625009,13253684541553, %U A185385 107561523423731,877109999610107,7183095973808493,59053492869471661,487189276030904207,4032100262853037127 %N A185385 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2*A(x) - (-1)^n)^n * x^n/n ). %F A185385 G.f. satisfies: A(x) = 1/(1-2*x*A(x)) * exp( Sum_{n>=1} 1/(1 - (-1)^n*2*x*A(x))^n * x^n/n ). %F A185385 G.f. satisfies: A(x) = sqrt( (1 - (2*A(x)+1)^2*x^2)/(1 - (2*A(x)-1)^2*x^2) ) / (1 - (2*A(x)+1)*x). %F A185385 G.f. satisfies: 0 = -(1+x) - 2*x*A(x) + (1+x)*(1-x)^2*A(x)^2 - 2*x*(1-x)^2*A(x)^3 - 2^2*x^2*(1+x)*A(x)^4 + 2^3*x^3*A(x)^5. %e A185385 G.f.: A(x) = 1 + 3*x + 11*x^2 + 61*x^3 + 381*x^4 + 2527*x^5 + 17559*x^6 +... %e A185385 where %e A185385 log(A(x)) = (2*A(x) + 1)*x + (2*A(x) - 1)^2*x^2/2 + (2*A(x) + 1)^3*x^3/3 + (2*A(x) - 1)^4*x^4/4 +... %e A185385 log(A(x)*(1-2*x*A(x))) = 1/(1 + 2*x*A(x))*x + 1/(1 - 2*x*A(x))^2*x^2/2 + 1/(1 + 2*x*A(x))^3*x^3/3 + 1/(1 - 2*x*A(x))^4*x^4/4 +... %o A185385 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2*A-(-1)^m+x*O(x^n))^m*x^m/m))); polcoeff(A, n)} %Y A185385 Cf. A202519, A163138, A202668, A202630, A202518, A155200. %K A185385 nonn %O A185385 0,2 %A A185385 _Paul D. Hanna_, Dec 22 2011