cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185390 Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined.

This page as a plain text file.
%I A185390 #70 Jan 12 2024 21:27:48
%S A185390 1,1,1,3,2,4,16,9,12,27,125,64,72,108,256,1296,625,640,810,1280,3125,
%T A185390 16807,7776,7500,8640,11520,18750,46656,262144,117649,108864,118125,
%U A185390 143360,196875,326592,823543,4782969,2097152,1882384,1959552,2240000,2800000,3919104,6588344,16777216
%N A185390 Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined.
%C A185390 Here, for any x in the domain of definition (f^i)(x) denotes the i-fold composition of f with itself, e.g., (f^2)(x) = f(f(x)). The domain of definition is the set of all values x for which f(x) is defined.
%C A185390 T(n,n) = n^n, the partial functions that are total functions.
%C A185390 T(n,0) = A000272(offset), see comment and link by _Dennis P. Walsh_.
%H A185390 G. C. Greubel, <a href="/A185390/b185390.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A185390 Geoffrey Critzer, <a href="/A185390/a185390.pdf">Distribution of non-functional points under a random partial function</a>
%H A185390 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 132, II.21.
%F A185390 E.g.f.: exp(T(x))/(1-T(x*y)) where T(x) is the e.g.f. for A000169.
%F A185390 T(n,k) = binomial(n,k)*k^k*(n-k+1)^(n-k-1). - _Geoffrey Critzer_, Feb 28 2022
%F A185390 Sum_{k=0..n} k * T(n,k) = A185391(n). - _Alois P. Heinz_, Jan 12 2024
%e A185390 Triangle begins:
%e A185390       1;
%e A185390       1,     1;
%e A185390       3,     2,     4;
%e A185390      16,     9,    12,    27;
%e A185390     125,    64,    72,   108,   256;
%e A185390    1296,   625,   640,   810,  1280,  3125;
%e A185390   16807,  7776,  7500,  8640, 11520, 18750, 46656;
%e A185390   ...
%p A185390 T:= (n, k)-> binomial(n,k)*k^k*(n-k+1)^(n-k-1):
%p A185390 seq(seq(T(n,k), k=0..n), n=0..10);  # _Alois P. Heinz_, Jan 12 2024
%t A185390 nn = 7; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[tx]/(1 - txy), {x, 0, nn}], {x, y}]] // Flatten
%o A185390 (Julia)
%o A185390 T(n, k) = binomial(n, k)*k^k*(n-k+1)^(n-k-1)
%o A185390 for n in 0:9 (println([T(n, k) for k in 0:n])) end
%o A185390 # _Peter Luschny_, Jan 12 2024
%Y A185390 Row sums give A000169(n+1).
%Y A185390 T(n,n-1) gives A055897(n).
%Y A185390 T(n,n)-T(n,n-1) gives A060226(n).
%Y A185390 Cf. A000272, A000312, A185391.
%K A185390 nonn,tabl
%O A185390 0,4
%A A185390 _Geoffrey Critzer_, Feb 09 2012