This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185390 #70 Jan 12 2024 21:27:48 %S A185390 1,1,1,3,2,4,16,9,12,27,125,64,72,108,256,1296,625,640,810,1280,3125, %T A185390 16807,7776,7500,8640,11520,18750,46656,262144,117649,108864,118125, %U A185390 143360,196875,326592,823543,4782969,2097152,1882384,1959552,2240000,2800000,3919104,6588344,16777216 %N A185390 Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined. %C A185390 Here, for any x in the domain of definition (f^i)(x) denotes the i-fold composition of f with itself, e.g., (f^2)(x) = f(f(x)). The domain of definition is the set of all values x for which f(x) is defined. %C A185390 T(n,n) = n^n, the partial functions that are total functions. %C A185390 T(n,0) = A000272(offset), see comment and link by _Dennis P. Walsh_. %H A185390 G. C. Greubel, <a href="/A185390/b185390.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A185390 Geoffrey Critzer, <a href="/A185390/a185390.pdf">Distribution of non-functional points under a random partial function</a> %H A185390 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 132, II.21. %F A185390 E.g.f.: exp(T(x))/(1-T(x*y)) where T(x) is the e.g.f. for A000169. %F A185390 T(n,k) = binomial(n,k)*k^k*(n-k+1)^(n-k-1). - _Geoffrey Critzer_, Feb 28 2022 %F A185390 Sum_{k=0..n} k * T(n,k) = A185391(n). - _Alois P. Heinz_, Jan 12 2024 %e A185390 Triangle begins: %e A185390 1; %e A185390 1, 1; %e A185390 3, 2, 4; %e A185390 16, 9, 12, 27; %e A185390 125, 64, 72, 108, 256; %e A185390 1296, 625, 640, 810, 1280, 3125; %e A185390 16807, 7776, 7500, 8640, 11520, 18750, 46656; %e A185390 ... %p A185390 T:= (n, k)-> binomial(n,k)*k^k*(n-k+1)^(n-k-1): %p A185390 seq(seq(T(n,k), k=0..n), n=0..10); # _Alois P. Heinz_, Jan 12 2024 %t A185390 nn = 7; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[tx]/(1 - txy), {x, 0, nn}], {x, y}]] // Flatten %o A185390 (Julia) %o A185390 T(n, k) = binomial(n, k)*k^k*(n-k+1)^(n-k-1) %o A185390 for n in 0:9 (println([T(n, k) for k in 0:n])) end %o A185390 # _Peter Luschny_, Jan 12 2024 %Y A185390 Row sums give A000169(n+1). %Y A185390 T(n,n-1) gives A055897(n). %Y A185390 T(n,n)-T(n,n-1) gives A060226(n). %Y A185390 Cf. A000272, A000312, A185391. %K A185390 nonn,tabl %O A185390 0,4 %A A185390 _Geoffrey Critzer_, Feb 09 2012