cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185392 Position of g(n) when the numbers f(j) and g(k) are jointly ranked, where f(j) = j + |cos j| and g(k) = k + |sin k|.

This page as a plain text file.
%I A185392 #20 Jun 29 2017 19:30:29
%S A185392 2,4,5,8,10,11,13,16,17,19,22,23,25,28,29,31,34,36,37,40,42,43,46,48,
%T A185392 49,52,54,55,57,60,61,63,66,67,69,72,73,75,78,80,81,84,86,87,90,92,93,
%U A185392 96,98,99,101,104,105,107,110,111,113,116,117,119,122,124,125
%N A185392 Position of g(n) when the numbers f(j) and g(k) are jointly ranked, where f(j) = j + |cos j| and g(k) = k + |sin k|.
%C A185392 For a guide to related sequences and a conjecture, see A206911.
%H A185392 G. C. Greubel, <a href="/A185392/b185392.txt">Table of n, a(n) for n = 1..1000</a>
%t A185392 f[n_] := N[n + Abs[Cos[n]]]; g[n_] := N[n + Abs[Sin[n]]]; z = 90;
%t A185392 c = Table[f[n], {n, 1, z}];
%t A185392 s = Table[g[n], {n, 1, z}];
%t A185392 j = Sort[Union[c, s]];
%t A185392 p[n_] := Position[j, f[n]];
%t A185392 q[n_] := Position[j, g[n]];
%t A185392 Flatten[Table[p[n], {n, 1, z}]]  (* A208327 *)
%t A185392 Flatten[Table[q[n], {n, 1, z}]]  (* A185392 *)
%Y A185392 Cf. A206911, A208327.
%K A185392 nonn
%O A185392 1,1
%A A185392 _Clark Kimberling_, Feb 26 2012