cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185394 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+193)^2 = y^2.

This page as a plain text file.
%I A185394 #21 Jun 13 2015 00:53:43
%S A185394 0,152,203,579,1403,1692,3860,8652,10335,22967,50895,60704,134328,
%T A185394 297104,354275,783387,1732115,2065332,4566380,10095972,12038103,
%U A185394 26615279,58844103,70163672,155125680,342969032,408944315,904139187,1998970475,2383502604,5269709828
%N A185394 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+193)^2 = y^2.
%H A185394 Colin Barker, <a href="/A185394/b185394.txt">Table of n, a(n) for n = 1..1000</a>
%H A185394 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).
%F A185394 G.f.: x^2*(152+51*x+376*x^2-88*x^3-17*x^4-88*x^5)/((1-x)*(1-6*x^3+x^6)). - _Colin Barker_, Aug 04 2012
%t A185394 LinearRecurrence[{1,0,6,-6,0,-1,1},{0,152,203,579,1403,1692,3860},70]
%o A185394 (PARI) concat(0, Vec(x^2*(88*x^5+17*x^4+88*x^3-376*x^2-51*x-152)/((x-1)*(x^6-6*x^3+1)) + O(x^100))) \\ _Colin Barker_, May 18 2015
%Y A185394 Cf. A206426.
%K A185394 nonn,easy
%O A185394 1,2
%A A185394 _Vladimir Joseph Stephan Orlovsky_, Feb 09 2012