This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185412 #10 Jan 21 2019 20:04:37 %S A185412 1,1,1,1,8,1,1,33,33,1,1,112,378,112,1,1,353,2938,2938,353,1,1,1080, %T A185412 18987,44912,18987,1080,1,1,3265,111051,520523,520523,111051,3265,1,1, %U A185412 9824,612820,5131040,9998182,5131040,612820,9824,1 %N A185412 Triangle T(n,m) read by rows: the matrix product A130595 * A156919. %C A185412 Row sums are A165968(n+1). %C A185412 Because A130595 is the inverse of the Pascal triangle A007318, we have A007318 *(this lower triangular matrix) = A156919. %F A185412 G.f.: 1/(1+x-xy-2x/(1-3xy/(1+x-4x/(1-5xy/(1+x-6x/(1-7xy/(1+x-8x/(1-9xy/(1+ ... (continued fraction). %e A185412 Triangle begins in row n=0 with columns 0 <= m <= n: %e A185412 1; %e A185412 1, 1; %e A185412 1, 8, 1; %e A185412 1, 33, 33, 1; %e A185412 1, 112, 378, 112, 1; %e A185412 1, 353, 2938, 2938, 353, 1; %e A185412 1, 1080, 18987, 44912, 18987, 1080, 1; %e A185412 1, 3265, 111051, 520523, 520523, 111051, 3265, 1; %e A185412 1, 9824, 612820, 5131040, 9998182, 5131040, 612820, 9824, 1; %p A185412 A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: %p A185412 A130595 := proc(n,m) (-1)^(n+m)*binomial(n,m) ; end proc: %p A185412 A185412 := proc(n,m) local a,j; a := 0 ; for j from m to n do a := a+A130595(n,j)*A156919(j,m) ; end do: a ; end proc: # _R. J. Mathar_, Feb 03 2011 %K A185412 nonn,easy,tabl %O A185412 0,5 %A A185412 _Paul Barry_, Jan 26 2011