cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185414 Square array, read by antidiagonals, used to recursively calculate the zigzag numbers A000111.

This page as a plain text file.
%I A185414 #16 Aug 07 2017 18:13:02
%S A185414 1,1,1,2,2,1,5,5,3,1,16,16,10,4,1,61,61,39,17,5,1,272,272,176,80,26,6,
%T A185414 1,1385,1385,903,421,145,37,7,1,7936,7936,5200,2464,880,240,50,8,1,
%U A185414 50521,50521,33219,15917,5825,1661,371,65,9,1
%N A185414 Square array, read by antidiagonals, used to recursively calculate the zigzag numbers A000111.
%C A185414 The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation (1)... T(n+1,k) = 1/2*{(k-1)*T(n,k-1)+(k+1)*T(n,k+1)}, with boundary condition T(1,k) = 1.
%C A185414 The first column of the table produces the sequence of zigzag numbers A000111. Cf. A185416, A185418 and A185420.
%C A185414 Diagonal T(n,n+1) = A290579(n) for n>=1. - _Paul D. Hanna_, Aug 07 2017
%F A185414 (1)... T(n,k) = Z(n,k)/k with Z(n,x) the zigzag polynomials described in A147309.
%e A185414 The array begins:
%e A185414 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
%e A185414 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...;
%e A185414 2, 5, 10, 17, 26, 37, 50, 65, 82, ...;
%e A185414 5, 16, 39, 80, 145, 240, 371, 544, 765, ...;
%e A185414 16, 61, 176, 421, 880, 1661, 2896, 4741, 7376, ...;
%e A185414 61, 272, 903, 2464, 5825, 12336, 23947, 43328, 73989, ...;
%e A185414 272, 1385, 5200, 15917, 41936, 98377, 210320, 416765, ...;
%e A185414 1385, 7936, 33219, 112640, 326965, 840960, 1962191, ...; ...
%e A185414 Examples of the recurrence:
%e A185414 T(4,4) = 80 = (3*T(3,3) + 5*T(3,5))/2 = (3*10 + 5*26)/2;
%e A185414 T(5,3) = 176 = (2*T(4,2) + 4*T(4,4))/2 = (2*16 + 4*80)/2;
%e A185414 T(6,2) = 272 = (1*T(5,1) + 3*T(5,3))/2 = (1*16 + 3*176)/2.
%p A185414 #A185414 Z := proc(n,x)
%p A185414 description 'zigzag polynomials A147309'
%p A185414 if n = 0 return 1 else return 1/2*x*(Z(n-1,x-1)+Z(n-1,x+1))
%p A185414 end proc:
%p A185414 # values of Z(n,x)/x
%p A185414 for n from 1 to 10 do seq(Z(n,k)/k, k = 1..10);
%p A185414 end do;
%o A185414 (PARI) {T(n,k)=if(n==1,1,((k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1))/2)}
%o A185414 for(n=1,10, for(k=1,10, print1(T(n,k),", ")); print(""))
%Y A185414 Cf. A000111, A147309, A185416, A185418, A185420, A290579.
%K A185414 nonn,easy,tabl
%O A185414 1,4
%A A185414 _Peter Bala_, Jan 26 2011