cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185416 Square array, read by antidiagonals, used to recursively calculate A080635.

This page as a plain text file.
%I A185416 #10 Jan 07 2013 02:31:37
%S A185416 1,1,1,3,2,1,9,6,3,1,39,24,11,4,1,189,114,51,18,5,1,1107,648,279,96,
%T A185416 27,6,1,7281,4194,1767,594,165,38,7,1,54351,30816,12699,4176,1143,264,
%U A185416 51,8,1,448821,251586,101979,32922,8865,2034,399,66,9,1
%N A185416 Square array, read by antidiagonals, used to recursively calculate A080635.
%C A185416 The table entries T(n,k), n,k>=1, are defined by the recurrence relation
%C A185416 1)... T(n+1,k) = (k-1)*T(n,k-1)-k*T(n,k)+(k+1)*T(n,k+1) with boundary condition T(1,k)=1.
%C A185416 The first column of the table is A080635.
%C A185416 For similar tables to calculate the zigzag numbers, the Springer numbers and the number of minimax trees see A185414, A185418 and A185420, respectively.
%F A185416 (1)... T(n,k) = P(n,k)/k, where P(n,x) are the polynomials defined in A185415.
%e A185416 Triangle begins
%e A185416 n\k|....1......2......3......4......5.......6.......7
%e A185416 =====================================================
%e A185416 ..1|....1......1......1......1......1.......1.......1
%e A185416 ..2|....1......2......3......4......5.......6.......7
%e A185416 ..3|....3......6.....11.....18.....27......38......51
%e A185416 ..4|....9.....24.....51.....96....165.....264.....399
%e A185416 ..5|...39....114....279....594...1143....2034....3399
%e A185416 ..6|..189....648...1767...4176...8865...17304...31563
%e A185416 ..7|.1107...4194..12699..32922..76203..161442..318339
%e A185416 ..
%e A185416 Examples of the recurrence:
%e A185416 T(4,4) = 96 = 3*T(3,3)-4*T(3,4)+5*T(3,5) = 3*11-4*18+ 5*27;
%e A185416 T(5,1) = 39 = 0*T(4,0)-1*T(4,1)+2*T(4,2) = -1*9+2*24;
%p A185416 #A185416
%p A185416 P := proc(n,x) description 'polynomial sequence P(n,x) A185415'
%p A185416 if n = 0 return 1
%p A185416 else return
%p A185416 x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
%p A185416 end proc:
%p A185416 for n from 1 to 10 do
%p A185416 seq(P(n,k)/k,k = 1..10);
%p A185416 end do;
%o A185416 (PARI) {T(n, k)=if(n==1, 1, (k-1)*T(n-1, k-1)-k*T(n-1,k)+(k+1)*T(n-1, k+1))}
%Y A185416 Cf. A080635, A185414, A185415, A185418, A185420.
%K A185416 nonn,easy,tabl
%O A185416 1,4
%A A185416 _Peter Bala_, Jan 28 2011