cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185418 Square array, read by antidiagonals, used to recursively calculate the Springer numbers A001586.

This page as a plain text file.
%I A185418 #19 Jan 05 2025 23:40:14
%S A185418 1,1,1,3,3,1,11,11,5,1,57,57,27,7,1,361,361,175,51,9,1,2763,2763,1353,
%T A185418 413,83,11,1,24611,24611,12125,3801,819,123,13,1,250737,250737,123987,
%U A185418 39487,8857,1441,171,15,1,2873041,2873041,1424215,458331,105489,18057,2327,227,17,1
%N A185418 Square array, read by antidiagonals, used to recursively calculate the Springer numbers A001586.
%C A185418 The table entries T(n,k), n,k>=0, are defined by the recurrence relation:
%C A185418 1)... T(n+1,k) = k*T(n,k-1)+(k+1)*T(n,k+1) with boundary condition T(0,k) = 1.
%C A185418 The first column of the table produces the sequence of Springer numbers A001586.
%C A185418 For similarly defined tables see A185414, A185416 and A185420.
%F A185418 (1)... T(n,k) = S(n,k) with S(n,x) the polynomials described in A185417.
%F A185418 (2)... First column: T(n,0) = A001586(n).
%F A185418 (3)... Second column: T(n,1) = A001586(n+1).
%F A185418 (4)... Second row: T(1,k) = A005408(k).
%F A185418 (5)... Third row: T(2,k) = A164897(k).
%e A185418 Square array begins
%e A185418 n\k|.....0......1.......2.......3........4........5........6
%e A185418 ============================================================
%e A185418 ..0|.....1......1.......1.......1........1........1........1
%e A185418 ..1|.....1......3.......5.......7........9.......11.......13
%e A185418 ..2|.....3.....11......27......51.......83......123......171
%e A185418 ..3|....11.....57.....175.....413......819.....1441.....2327
%e A185418 ..4|....57....361....1353....3801.....8857....18057....33321
%e A185418 ..5|...361...2763...12125...39487...105489...244211...507013
%e A185418 ..6|..2763..24611..123987..458331..1379003..3569523..8229891
%e A185418 ..
%e A185418 Examples of recurrence relation:
%e A185418 T(4,3) = 3801 = 3*T(3,2) + 4*T(3,4) = 3*175 + 4*819;
%e A185418 T(5,1) = 2763 = 1*T(4,0)+ 2*T(4,2) = 1*57 + 2*1353.
%p A185418 # A185418
%p A185418 S := proc(n, x) option remember; description `polynomials S(n, x)`;
%p A185418 if n = 0 then 1 else x*S(n-1,x-1)+(x+1)*S(n-1,x+1) end if end proc:
%p A185418 for n from 0 to 10 do seq(S(n, k), k = 0..10) end do;
%t A185418 T[n_, k_] := T[n, k] = If[n<0 || k<0, 0, If[n == 0, 1, k T[n-1, k-1] + (k+1)*T[n-1, k+1]]];
%t A185418 Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 22 2021 *)
%o A185418 (PARI) {T(n,k)=if(n<0||k<0,0,if(n==0,1,k*T(n-1,k-1)+(k+1)*T(n-1,k+1)))}
%Y A185418 Cf. A001586, A185417, A185414, A185416, A185420.
%K A185418 nonn,easy,tabl
%O A185418 0,4
%A A185418 _Peter Bala_, Jan 30 2011