cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185420 Square array, read by antidiagonals, used to recursively calculate the number of minimax trees A080795.

This page as a plain text file.
%I A185420 #18 Jan 05 2025 23:40:21
%S A185420 1,4,1,20,5,1,128,32,6,1,1024,256,46,7,1,9856,2464,432,62,8,1,110720,
%T A185420 27680,4784,662,80,9,1,1421312,355328,60864,8224,952,100,10,1,
%U A185420 20525056,5131264,873664,116128,13048,1308,122,11,1
%N A185420 Square array, read by antidiagonals, used to recursively calculate the number of minimax trees A080795.
%C A185420 The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation
%C A185420 (1)... T(n+1,k) = (2*k+2)*T(n,k+1)-(k-1)*T(n,k-1),
%C A185420 with boundary condition T(1,k) = 1.
%C A185420 The first column of the table gives A080795.
%C A185420 For similarly defined tables used to calculate the zigzag numbers A000111 and the Springer numbers A001586 see A185414 and A185418, respectively.
%C A185420 See also A185416.
%F A185420 (1)... T(n,k) = M(n,k)/k with M(n,x) the polynomials described in A185419.
%F A185420 (2)... First column: T(n,1) = A080795(n).
%F A185420 (3)... Second column: T(n,2) = (1/4)*A080795(n+1).
%e A185420 Square array begins
%e A185420 n\k|......1.......2.......3........4.......5.........6
%e A185420 ======================================================
%e A185420 ..1|......1.......1.......1........1........1........1
%e A185420 ..2|......4.......5.......6........7........8........9
%e A185420 ..3|.....20......32......46.......62.......80......100
%e A185420 ..4|....128.....256.....432......662......952.....1308
%e A185420 ..5|...1024....2464....4784.....8224....13048....19544
%e A185420 ..6|...9856...27680...60864...116128...201632...327096
%e A185420 ..7|.110720..355328..873664..1833728..3460640..6046720
%e A185420 ..
%e A185420 Examples of recurrence relation:
%e A185420 T(4,3) = 432 = 8*T(3,4) - 2*T(3,2) = 8*62 - 2*32;
%e A185420 T(6,2) = 27680 = 6*T(5,3) - 1*T(5,1) = 6*4784 - 1*1024.
%p A185420 #A185420
%p A185420 M := proc(n,x) option remember;
%p A185420 description 'minimax polynomials M(n,x)'
%p A185420 if n = 0
%p A185420 return 1
%p A185420 else return
%p A185420 x*(2*M(n-1,x+1)-M(n-1,x-1))
%p A185420 end proc:
%p A185420 for n from 1 to 10 do
%p A185420 seq(M(n,k)/k, k = 1..10);
%p A185420 end do;
%t A185420 M[n_, x_] := M[n, x] = If[n == 0, 1, x (2 M[n - 1, x + 1] - M[n - 1, x - 1])];
%t A185420 T[n_, k_] := M[n, k]/k;
%t A185420 Table[T[d - k + 1, k], {d, 1, 9}, {k, 1, d}] // Flatten (* _Jean-François Alcover_, Sep 24 2022 *)
%o A185420 (PARI) {T(n,k)=if(n<1||k<1,0,if(n==1,1,(2*k+2)*T(n-1,k+1)-(k-1)*T(n-1,k-1)))}
%Y A185420 Cf. A080795, A185414, A185416, A185418, A185419.
%K A185420 nonn,easy,tabl
%O A185420 1,2
%A A185420 _Peter Bala_, Jan 30 2011