This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185422 #43 Apr 28 2020 14:49:01 %S A185422 1,1,1,3,3,1,9,15,6,1,39,75,45,10,1,189,459,330,105,15,1,1107,3087, %T A185422 2709,1050,210,21,1,7281,23535,23814,11109,2730,378,28,1,54351,197235, %U A185422 228285,122850,36099,6174,630,36,1 %N A185422 Forests of k increasing plane unary-binary trees on n nodes. Generalized Stirling numbers of the second kind associated with A185415. %C A185422 An increasing tree is a labeled rooted tree with the property that the sequence of labels along any path starting from the root is increasing. %C A185422 A080635 enumerates increasing plane (ordered) unary-binary trees with n nodes labeled from the set {1,2,...n}. The entry T(n,k) of the present table counts forests of k increasing plane unary-binary trees having n nodes in total. See below for an example. %C A185422 The Stirling number of the second kind Stirling2(n,k) counts the partitions of the set [n] set into k blocks. Arranging the elements in each block in ascending numerical order provides an alternative combinatorial interpretation for Stirling2(n,k) as counting forests of k increasing unary trees on n nodes. Thus we may view the present array as generalized Stirling numbers of the second kind (associated with A080635 or with the polynomials P(n,x) of A185415 - see formulas (1) and (2) below). %C A185422 For a table of ordered forests of increasing plane unary-binary trees see A185423. For the enumeration of forests and ordered forests in the non-plane case see A147315 and A185421. %C A185422 The Bell transform of A080635(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 18 2016 %D A185422 F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48. %H A185422 G. C. Greubel, <a href="/A185422/b185422.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A185422 F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of increasing trees</a> %H A185422 T. Copeland, <a href="http://tcjpn.files.wordpress.com/2008/06/mathemagicalforestswp.pdf">Mathemagical Forests</a> %F A185422 TABLE ENTRIES %F A185422 (1)... T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*P(n,j), %F A185422 where P(n,x) are the polynomials described in A185415. %F A185422 Compare (1) with the formula for the Stirling numbers of the second kind %F A185422 (2)... Stirling2(n,k) = 1/k!*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*j^n. %F A185422 RECURRENCE RELATION %F A185422 (3)... T(n+1,k) = T(n,k-1) + k*T(n,k) + k*(k+1)*T(n,k+1). %F A185422 GENERATING FUNCTION %F A185422 Let E(t) = 1/2 + sqrt(3)/2*tan(sqrt(3)/2*t + Pi/6) be the e.g.f. for A080635. %F A185422 The e.g.f. for the present triangle is %F A185422 (4)... exp{x*(E(t)-1)} = Sum_{n>=0} R(n,x)*t^n/n! %F A185422 = 1 + x*t + (x+x^2)*t^2/2! + (3*x+3*x^2+x^3)*t^3/3! + .... %F A185422 ROW POLYNOMIALS %F A185422 The row generating polynomials R(n,x) satisfy the recurrence %F A185422 (5)... R(n+1,x) = x*{R(n,x)+R'(n,x)+R''(n,x)}, %F A185422 where the prime ' indicates differentiation with respect to x. %F A185422 RELATIONS WITH OTHER SEQUENCES %F A185422 Column 1 is A080635. %F A185422 k!*T(n,k) counts ordered forests A185423(n,k). %F A185422 The row polynomials R(n,x) are given by D^n(exp(x*t)) evaluated at t = 0, where D is the operator (1+t+t^2)*d/dt. Cf. A147315 and A008297. - _Peter Bala_, Nov 25 2011 %e A185422 Triangle begins %e A185422 n\k|....1......2......3......4......5......6......7 %e A185422 =================================================== %e A185422 ..1|....1 %e A185422 ..2|....1......1 %e A185422 ..3|....3......3......1 %e A185422 ..4|....9.....15......6......1 %e A185422 ..5|...39.....75.....45.....10......1 %e A185422 ..6|..189....459....330....105.....15......1 %e A185422 ..7|.1107...3087...2709...1050....210.....21......1 %e A185422 .. %e A185422 Examples of the recurrence: %e A185422 T(5,1) = 39 = T(4,0)+1*T(4,1)+2*T(4,2) = 1*9+2*15; %e A185422 T(6,3) = 330 = T(5,2)+3*T(5,3)+3*4*T(5,4) = 75+3*45+12*10. %e A185422 Examples of forests: %e A185422 T(4,1) = 9. The 9 plane increasing unary-binary trees on 4 nodes are shown in the example section of A080635. %e A185422 T(4,2) = 15. The 15 forests consisting of two plane increasing unary-binary trees on 4 nodes consist of the 12 forests %e A185422 ......... ......... ...3..... %e A185422 .2...3... .3...2... ...|..... %e A185422 ..\./.... ..\./.... ...2..... %e A185422 ...1...4. ...1...4. ...|..... %e A185422 ......... ......... ...1...4. %e A185422 . %e A185422 ......... ......... ...4..... %e A185422 .2...4... .4...2... ...|..... %e A185422 ..\./.... ..\./.... ...2..... %e A185422 ...1...3. ...1...3. ...|..... %e A185422 ......... ......... ...1...3. %e A185422 . %e A185422 ......... ......... ...4..... %e A185422 .3...4... .4...3... ...|..... %e A185422 ..\./.... ..\./.... ...3..... %e A185422 ...1...2. ...1...2. ...|..... %e A185422 ......... ......... ...1...2. %e A185422 ......... ......... ...4..... %e A185422 .3...4... .4...3... ...|..... %e A185422 ..\./.... ..\./.... ...3..... %e A185422 ...2...1. ...2...1. ...|..... %e A185422 ......... ......... ...2...1. %e A185422 . %e A185422 and the three remaining forests %e A185422 ......... ......... .......... %e A185422 ..2..4... ..3..4... ..4...3... %e A185422 ..|..|... ..|..|... ..|...|... %e A185422 ..1..3... ..1..2... ..1...2... %e A185422 ......... ......... .......... %p A185422 #A185422 %p A185422 P := proc(n,x) %p A185422 description 'polynomial sequence P(n,x) A185415' %p A185422 if n = 0 %p A185422 return 1 %p A185422 else %p A185422 return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1)) %p A185422 end proc: %p A185422 with combinat: %p A185422 T:= (n,k) -> 1/k!*add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k): %p A185422 for n from 1 to 10 do %p A185422 seq(T(n,k),k = 1..n); %p A185422 end do; %t A185422 t[n_, k_] := t[n, k] = t[n-1, k-1] + k*t[n-1, k] + k*(k+1)*t[n-1, k+1]; t[n_, n_] = 1; t[n_, k_] /; Not[1 <= k <= n] = 0; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 22 2012, from given recurrence *) %o A185422 (PARI) {T(n,k)=if(n<1||k<1||k>n,0,if(n==k,1,T(n-1,k-1)+k*T(n-1,k)+k*(k+1)*T(n-1,k+1)))} %o A185422 (PARI) {T(n,k)=round(n!*polcoeff(polcoeff(exp(y*(-1/2+sqrt(3)/2*tan(sqrt(3)/2*x+Pi/6+x*O(x^n)))+y*O(y^k)),n,x),k,y))} %o A185422 (Sage) # uses[bell_matrix from A264428] %o A185422 # Adds a column 1,0,0,0, ... at the left side of the triangle. %o A185422 bell_matrix(lambda n: A080635(n+1), 10) # _Peter Luschny_, Jan 18 2016 %Y A185422 Cf. A080635, A008277, A185415, A147315, A185423. %K A185422 nonn,easy,tabl %O A185422 1,4 %A A185422 _Peter Bala_, Jan 28 2011