cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185424 Numerators of generalized Bernoulli numbers associated with the zigzag numbers A000111.

This page as a plain text file.
%I A185424 #26 Feb 15 2015 16:18:26
%S A185424 1,-1,1,-1,19,-5,253,-61,3319,-1385,222557,-50521,422152729,-2702765,
%T A185424 59833795,-199360981,439264083023,-19391512145,76632373664299,
%U A185424 -2404879675441,4432283799315809,-370371188237525
%N A185424 Numerators of generalized Bernoulli numbers associated with the zigzag numbers A000111.
%C A185424 DEFINITION
%C A185424 Let E(t) = sec(t)+tan(t) denote the generating function for the zigzag numbers A000111. The zigzag Bernoulli numbers, denoted ZB(n), are defined by means of the generating function
%C A185424 (1)... log E(t)/(E(t)-1) = sum {n = 0..inf} ZB(n)*t^n/n!.
%C A185424 Notice that if we were to take E(t) equal to exp(t) then (1) would be the defining function for the classical Bernoulli numbers B_n. The first few even-indexed values of ZB(n) are
%C A185424 ....n..|..0...2.....4.......6........8..........10...........12....
%C A185424 ===================================================================
%C A185424 .ZB(n).|..1..1/6..19/30..253/42..3319/30..222557/66..422152729/2730
%C A185424 while the odd-indexed values begin
%C A185424 ....n..|. ..1......3......5.......7........9.........11..
%C A185424 =========================================================
%C A185424 .ZB(n).|. -1/2...-1/2...-5/2...-61/2...-1385/2...-50521/2
%C A185424 The present sequence gives the numerators of the zigzag Bernoulli numbers. It is not difficult to show that the odd-indexed value ZB(2*n+1) equals -1/2*A000364(n). The numerators of the even-indexed values ZB(2*n) are shown separately in A185425.
%C A185424 VON STAUDT-CLAUSEN THEOREM
%C A185424 The following analog of the von Staudt-Clausen theorem holds:
%C A185424 (2)... ZB(2*n) + 1/2 + S(1) + (-1)^(n+1)*S(3) equals an integer, where
%C A185424 ... S(1) = sum {prime p, p = 1 (mod 4), p-1|2*n} 1/p,
%C A185424 ... S(3) = sum {prime p, p = 3 (mod 4), p-1|2*n} 1/p.
%C A185424 For example,
%C A185424 (3)... ZB(12) + 1/2 + (1/5+1/13) - (1/3+1/7) = 154635.
%C A185424 Further examples are given below.
%F A185424 SEQUENCE ENTRIES
%F A185424 a(n) = numerator of the rational number ZB(n) where
%F A185424 (1)... ZB(n) = (-1)^(n*(n-1)/2)*sum {k = 0..n} binomial(n,k)/(k+1)* Bernoulli(n- k)*Euler(k).
%F A185424 For odd indices this simplifies to
%F A185424 (2)... ZB(2*n+1) = (-1)^n*Euler(2*n)/2, where Euler(2*n) = A028296(n).
%F A185424 For even indices we have
%F A185424 (3)... ZB(2*n) = (-1)^n*sum {k = 0..n} binomial(2*n,2*k)/(2*k+1)* Bernoulli(2*n- 2*k)*Euler(2*k).
%F A185424 GENERATING FUNCTION
%F A185424 E.g.f:
%F A185424 (4)... log(sec(t)+tan(t))/(sec(t)+tan(t)-1) =
%F A185424    1 -1/2*t +1/6*t^2/2! -1/2*t^3/3! + ....
%F A185424 RELATION WITH ZIGZAG POLYNOMIALS OF A147309
%F A185424 The classical Bernoulli numbers B_n are given by the double sum
%F A185424 (5)... B_n = sum {k=0..n} sum {j=0..k} (-1)^j*binomial(k,j)*j^n/(k+1).
%F A185424 The corresponding formula for the zigzag Bernoulli numbers is
%F A185424 (6)... ZB(n) = sum {k=0..n} sum {j=0..k}(-1)^j*binomial(k,j)*Z(n,j)/(k+1), where Z(n,x) is a zigzag polynomial as defined in A147309. Umbrally, we can express this as
%F A185424 (7)... ZB(n) = Z(n,B), where on the lhs the understanding is that in the expansion of the zigzag polynomial Z(n,x) a term such as c_k*x^k is to be replaced with c_k*B_k. For example, Z(6,x) = 40*x^2+20*x^4+x^6 and so ZB(6) = 40*B_2+20*B_4+B_6 = 40*(1/6)+20*(-1/30)+(1/42) = 253/42.
%e A185424 Examples of von Staudt and Clausen's theorem for ZB(2*n):
%e A185424 ZB(2) = 1/6 = 1 - 1/2 - 1/3;
%e A185424 ZB(4) = 19/30 = 1 - 1/2 + 1/3 - 1/5;
%e A185424 ZB(6) = 253/42 = 7 - 1/2 - 1/3 - 1/7;
%e A185424 ZB(8) = 3319/30 = 111 - 1/2 + 1/3 - 1/5;
%e A185424 ZB(10) = 222557/66 = 3373 - 1/2 - 1/3 - 1/11.
%p A185424 #A185424
%p A185424 a:= n-> numer((-1)^(n*(n-1)/2)*add(binomial(n,k)/(k+1)* bernoulli(n-k) *euler(k), k = 0..n)):
%p A185424 seq(a(n), n = 0..20);
%t A185424 Numerator[ Range[0, 30]! CoefficientList[ Series[Log(Sec[x]+Tan[x])/(Sec[x] +Tan[x] - 1), {x, 0, 30}], x]]
%Y A185424 Cf. A000111, A027641, A027642, A147309, A185425.
%Y A185424 Sequence of denominators is A141056.
%K A185424 easy,sign,frac
%O A185424 0,5
%A A185424 _Peter Bala_, Feb 18 2011