This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185443 #15 Feb 16 2025 08:33:13 %S A185443 1,3,4,6,6,10,10,10,21,66,207,722,6563,25007,372733,2028763,5472218, %T A185443 41430101,75142985,192675195,201216921,925285050,935598827,2288358581, %U A185443 2346034092,26271379744,41588896504,152594692251,529451874660 %N A185443 Engel expansion of A060997 = 1.433127... %H A185443 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/EngelExpansion.html">Engel Expansion</a> %p A185443 Digits := 5000: %p A185443 a0 := evalf(BesselI(0,2)/BesselI(1,2)): %p A185443 f1 := proc(n) local i, an, u, a: %p A185443 an := [ ]: %p A185443 u := n: %p A185443 for i from 1 to 30 do %p A185443 a := ceil(1/u): %p A185443 an := [ op(an), a ]: %p A185443 u := u * a - 1: %p A185443 od: %p A185443 RETURN (an): end: f1(a0); %o A185443 (PARI) CFB(v)={ \\ converts a continued fraction to a number %o A185443 my(x=v[#v]*1.); %o A185443 forstep(i=#v-1,1,-1, %o A185443 x = v[i] + x^-1; %o A185443 ); %o A185443 x %o A185443 }; %o A185443 Engel(x)={ %o A185443 my(v=List(),t); %o A185443 while(1, %o A185443 trap(, %o A185443 return(Vec(v)) %o A185443 , %o A185443 t = ceil(1/x) %o A185443 ); %o A185443 listput(v,t); %o A185443 x = (x * t) - 1 %o A185443 ) %o A185443 }; %o A185443 \p 500 %o A185443 Engel(CFB(vector(500,i,i))) %Y A185443 Cf. A006784. %K A185443 nonn %O A185443 1,2 %A A185443 _Jani Melik_, Feb 04 2011 %E A185443 gp script from _Charles R Greathouse IV_, Feb 06 2011