This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185445 #20 Aug 18 2024 06:31:52 %S A185445 24,60,180,240,900,960,720,2880,15360,3600,6480,61440,14400,46080, %T A185445 983040,25920,32400,3932160,184320,62914560,233280,230400,2949120, %U A185445 129600,414720,11796480,4026531840,921600,16106127360,810000,1658880,188743680,1166400,1030792151040,14745600,3732480 %N A185445 Smallest number having exactly t divisors, where t is the n-th triprime (A014612). %C A185445 This is the 3rd row of an infinite array A[k,n] = smallest number having exactly j divisors where j is the n-th natural number with exactly k prime factors (with multiplicity). %C A185445 The first row is A061286, the second row is A096932. %F A185445 a(n) = A005179(A014612(n)). %e A185445 a(10) is 3600 because the 10th triprime is 45, and the smallest number with exactly 45 factors is 3600 = 2^4 * 3^2 * 5^2. %e A185445 a(20) is 62914560 because the 10th triprime is 92, and the smallest number with exactly 92 factors is 62914560 = 2^22 * 3 * 5. %o A185445 (Python) %o A185445 from math import isqrt, prod %o A185445 from sympy import isprime, primepi, primerange, integer_nthroot, prime, divisors %o A185445 def A185445(n): %o A185445 def mult_factors(n): %o A185445 if isprime(n): %o A185445 return [(n,)] %o A185445 c = [] %o A185445 for d in divisors(n,generator=True): %o A185445 if 1<d<n: %o A185445 for a in mult_factors(n//d): %o A185445 c.append(tuple(sorted((d,)+a))) %o A185445 return list(set(c)) %o A185445 def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a))) %o A185445 m, k = n, f(n) %o A185445 while m != k: %o A185445 m, k = k, f(k) %o A185445 return min((prod(prime(i)**(j-1) for i,j in enumerate(reversed(d),1)) for d in mult_factors(m)),default=1) # _Chai Wah Wu_, Aug 17 2024 %Y A185445 Cf. A005179, A014612, A061286, A096932. %K A185445 nonn,easy %O A185445 1,1 %A A185445 _Jonathan Vos Post_, Feb 03 2011