A185454 Trajectory of 5 under repeated application of the map in A185452.
5, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52, 26, 13, 33, 83, 208, 104, 52
Offset: 1
References
- J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 88.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
Maple
f:=n->if n mod 2 = 0 then n/2 else (5*n+1)/2; fi; T:=proc(n,M) global f; local t1,i; t1:=[n]; for i from 1 to M-1 do t1:=[op(t1),f(t1[nops(t1)])]; od: t1; end; T(5,120);
-
PARI
Vec(x*(5 + 13*x + 33*x^2 + 83*x^3 + 208*x^4 + 104*x^5 + 52*x^6 + 21*x^7) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^60)) \\ Colin Barker, Feb 01 2018
Formula
From Colin Barker, Feb 01 2018: (Start)
G.f.: x*(5 + 13*x + 33*x^2 + 83*x^3 + 208*x^4 + 104*x^5 + 52*x^6 + 21*x^7) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-7) for n>8. (End)
Extensions
Comment corrected by Paolo P. Lava, Mar 10 2011
Comments