A185475 Number of (n+2)X9 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
336690, 3212372, 20411234, 100908633, 416227164, 1497314456, 4845252741, 14425457557, 40183952539, 106069534256, 267851235385, 651716593546, 1535886293189, 3519099305097, 7860273371841, 17147427400925, 36585315520514
Offset: 1
Keywords
Examples
Some solutions for 4X9 ..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..1 ..0..0..0..0..0..0..0..1..2....0..0..0..0..0..0..0..0..1 ..0..0..0..0..0..1..1..1..0....0..0..0..0..0..1..1..2..2 ..0..0..0..1..2..1..2..2..0....0..0..0..0..1..1..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = (1/25519951134720000)*n^21
+ (1/127919554560000)*n^20
+ (1877/2551995113472000)*n^19
+ (101861/2328135892992000)*n^18
+ (10763959/5820339732480000)*n^17
+ (24725641/418455797760000)*n^16
+ (836589317/564915326976000)*n^15
+ (22655691343/753220435968000)*n^14
+ (5887296211331/11298306539520000)*n^13
+ (436620904451/52672757760000)*n^12
+ (3650470717199/28970016768000)*n^11
+ (2036750095277/1170505728000)*n^10
+ (1572848084986607/79009136640000)*n^9
+ (1160407108626427/6584094720000)*n^8
+ (2296534278781759/1975228416000)*n^7
+ (525799308273622787/94152554496000)*n^6
+ (25696337451699745273/1333827855360000)*n^5
+ (2682952836795541619/55576160640000)*n^4
+ (124299364108443341/1407929402880)*n^3
+ (73695052155737/701719200)*n^2
+ (1503827501467/23279256)*n
+ 4299
Comments