A185476 Number of (n+2)X10 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
636698, 6763143, 46732687, 247920339, 1090826214, 4179700035, 14425457557, 45945546278, 137459779979, 391292289484, 1069448946626, 2823755277643, 7231630113468, 18008053766767, 43669946969427, 103231986144218
Offset: 1
Keywords
Examples
Some solutions for 4X10 ..0..0..0..0..0..0..0..0..0..2....0..0..0..0..0..0..0..0..0..2 ..0..0..0..0..0..0..0..0..2..2....0..0..0..0..0..0..0..0..1..2 ..0..0..0..0..0..1..1..2..1..2....0..0..0..0..0..0..2..2..0..0 ..0..0..0..0..0..2..2..2..2..2....0..0..0..0..1..1..2..2..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = (1/3655545353349120000)*n^23
+ (97/1543957043650560000)*n^22
+ (43/6288115959595008)*n^21
+ (37903/80205560709120000)*n^20
+ (4363319/187146308321280000)*n^19
+ (111930887/128047474114560000)*n^18
+ (173896301/6722492391014400)*n^17
+ (999595589/1614043791360000)*n^16
+ (966949557157/79088145776640000)*n^15
+ (2303051708719/11298306539520000)*n^14
+ (762601942063/254936147558400)*n^13
+ (260118396674119/6373403688960000)*n^12
+ (6455418497147533/12167407042560000)*n^11
+ (10938624786824941/1738201006080000)*n^10
+ (15334472267219503/243348140851200)*n^9
+ (54278261336966987/108637562880000)*n^8
+ (9086167557375919/3017710080000)*n^7
+ (11925742307499655463/889218570240000)*n^6
+ (6823870134571712569/157688093122560)*n^5
+ (7908447122576853679/78218300160000)*n^4
+ (17170767258622048961/100380151872000)*n^3
+ (406964817911133233/2151003254400)*n^2
+ (2131730921383/19612560)*n
+ 6377
Comments