This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185477 #11 Jul 22 2025 09:48:41 %S A185477 1169,4594,4594,13659,21834,13659,34779,76309,76309,34779,79743, %T A185477 225672,308692,225672,79743,169052,594798,1043186,1043186,594798, %U A185477 169052,336690,1433903,3097348,3959167,3097348,1433903,336690,636698,3212372,8297059 %N A185477 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order. %C A185477 Table starts %C A185477 ....1169.....4594.....13659......34779......79743......169052.......336690 %C A185477 ....4594....21834.....76309.....225672.....594798.....1433903......3212372 %C A185477 ...13659....76309....308692....1043186....3097348.....8297059.....20411234 %C A185477 ...34779...225672...1043186....3959167...12990375....37961900....100908633 %C A185477 ...79743...594798...3097348...12990375...46410729...146203201....416227164 %C A185477 ..169052..1433903...8297059...37961900..146203201...493061605...1497314456 %C A185477 ..336690..3212372..20411234..100908633..416227164..1497314456...4845252741 %C A185477 ..636698..6763143..46732687..247920339.1090826214..4179700035..14425457557 %C A185477 .1151966.13496424.100636591..570069808.2669230399.10893560939..40183952539 %C A185477 .2005704.25706057.205574323.1239033996.6166331968.26828743607.106069534256 %H A185477 R. H. Hardin, <a href="/A185477/b185477.txt">Table of n, a(n) for n = 1..1404</a> %H A185477 R. H. Hardin, <a href="/A185477/a185477.txt">Polynomials for columns 1-8</a> %F A185477 Empirical: T(n,k) is a polynomial of degree 2k+7 in n, for fixed k. %F A185477 Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order. %F A185477 Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k. %e A185477 Some solutions for 5X4 %e A185477 ..0..0..0..0....0..0..1..1....0..0..0..1....0..0..0..2....0..0..0..1 %e A185477 ..0..0..0..2....1..1..1..2....0..0..0..1....1..1..1..2....0..0..1..2 %e A185477 ..0..0..1..2....1..1..1..2....0..0..0..1....1..1..1..2....0..1..2..2 %e A185477 ..0..1..1..2....1..1..2..1....1..1..2..1....1..1..1..2....0..2..0..0 %e A185477 ..2..1..1..2....1..2..0..2....2..2..1..0....1..1..2..2....0..2..2..2 %K A185477 nonn,tabl %O A185477 1,1 %A A185477 _R. H. Hardin_, General degree formula intuited by _D. S. McNeil_ in the Sequence Fans Mailing List, Jan 28 2011