cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A185468 Number of (n+2)X(n+2) 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

1169, 21834, 308692, 3959167, 46410729, 493061605, 4845252741, 45945546278, 443977171724, 4605035061272, 52677880798334, 659609567593921, 8802320668197926, 122014363451316512, 1727721369461575287
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Diagonal of A185477

Examples

			Some solutions for 4X4
..0..0..0..2....0..0..0..0....0..0..2..2....0..0..0..2....0..0..1..1
..0..0..1..2....1..1..1..2....0..0..2..2....0..1..2..2....0..1..1..1
..0..1..1..2....1..1..2..0....0..0..2..2....0..2..1..1....0..1..1..2
..1..2..2..0....1..1..2..1....1..1..1..2....0..2..1..1....2..2..2..0
		

A185469 Number of (n+2)X3 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

1169, 4594, 13659, 34779, 79743, 169052, 336690, 636698, 1151966, 2005704, 3376100, 5514721, 8769262, 13611298, 20669745, 30770788, 44985087, 64683126, 91599625, 127907991, 176305841, 240112688, 323380940, 431021422, 568944692
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 1 of A185477

Examples

			Some solutions for 4X3
..1..1..2....0..1..2....0..0..0....0..1..2....0..0..1....0..0..0....0..0..2
..1..1..2....0..1..2....0..0..2....0..1..2....0..1..1....0..0..2....0..2..2
..1..2..1....0..1..2....0..2..1....1..1..0....0..2..2....0..1..0....1..0..1
..2..0..1....2..1..2....2..0..0....2..0..1....1..0..1....0..2..0....2..0..2
		

Formula

Empirical: a(n) = (1/362880)*n^9
+ (1/1008)*n^8
+ (431/12096)*n^7
+ (373/720)*n^6
+ (82453/17280)*n^5
+ (637/18)*n^4
+ (2819461/18144)*n^3
+ (119729/315)*n^2
+ (605807/1260)*n
+ 112

A185470 Number of (n+2)X4 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

4594, 21834, 76309, 225672, 594798, 1433903, 3212372, 6763143, 13496424, 25706057, 46997040, 82868632, 141494158, 234746166, 379524035, 599450565, 927014574, 1406248164, 2096040183, 3074201592, 4442414038, 6332210033
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 2 of A185477

Examples

			Some solutions for 6X4
..0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..2....0..0..0..1
..0..0..1..1....0..0..1..2....0..0..0..2....0..0..1..1....0..0..0..1
..0..0..1..2....0..0..1..2....0..0..1..2....1..1..2..2....0..0..1..1
..0..0..1..2....0..1..1..1....0..1..2..1....1..2..1..2....0..1..0..1
..0..0..2..1....1..1..2..1....1..2..2..1....1..2..2..0....2..2..2..1
		

Formula

Empirical: a(n) = (1/9979200)*n^11
+ (29/3628800)*n^10
+ (257/241920)*n^9
+ (4621/120960)*n^8
+ (400927/604800)*n^7
+ (1134257/172800)*n^6
+ (31386443/725760)*n^5
+ (20355493/90720)*n^4
+ (80111509/100800)*n^3
+ (40459121/25200)*n^2
+ (7603747/4620)*n
+ 273

A185471 Number of (n+2)X5 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

13659, 76309, 308692, 1043186, 3097348, 8297059, 20411234, 46732687, 100636591, 205574323, 401123377, 751921908, 1360579387, 2385984676, 4068843506, 6766785098, 11002001311, 17525142877, 27400120766, 42115574722, 63730107482
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 3 of A185477

Examples

			Some solutions for 4X5
..0..0..0..1..2....0..0..0..0..0....0..0..0..0..2....0..0..0..1..1
..0..0..1..1..2....0..0..1..2..2....0..0..0..2..2....0..0..0..1..2
..0..1..1..2..0....1..1..2..1..1....0..0..1..0..1....0..1..1..1..2
..2..1..2..0..2....2..2..2..1..2....1..2..2..1..1....1..1..2..2..2
		

Formula

Empirical: a(n) = (1/444787200)*n^13
+ (107/479001600)*n^12
+ (11/1088640)*n^11
+ (3623/6220800)*n^10
+ (78227/3628800)*n^9
+ (6420917/14515200)*n^8
+ (148481/27216)*n^7
+ (1861160843/43545600)*n^6
+ (4966108109/21772800)*n^5
+ (1448539279/1555200)*n^4
+ (3663351401/1330560)*n^3
+ (2013261953/415800)*n^2
+ (15650889/3640)*n
+ 556

A185472 Number of (n+2)X6 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

34779, 225672, 1043186, 3959167, 12990375, 37961900, 100908633, 247920339, 570069808, 1239033996, 2565887950, 5095678058, 9756244258, 18087995239, 32592776835, 57255685167, 98315034745, 165384433476, 273069215898
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 4 of A185477

Examples

			Some solutions for 4X6
..0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..0
..0..0..0..1..1..2....0..0..0..0..1..2....0..0..0..0..1..2....0..0..0..0..1..2
..0..1..1..1..2..0....0..0..0..1..2..2....0..0..0..0..1..2....0..0..0..1..0..0
..0..1..1..2..0..0....0..2..2..2..2..2....0..0..2..2..2..2....0..1..2..1..0..1
		

Formula

Empirical: a(n) = (1/27243216000)*n^15
+ (97/21794572800)*n^14
+ (1549/6227020800)*n^13
+ (4127/479001600)*n^12
+ (676031/2395008000)*n^11
+ (54763/6220800)*n^10
+ (60678553/304819200)*n^9
+ (904333037/304819200)*n^8
+ (910283537/31104000)*n^7
+ (8446896821/43545600)*n^6
+ (213392977159/239500800)*n^5
+ (52396736149/17107200)*n^4
+ (70560211894163/9081072000)*n^3
+ (1840763445463/151351200)*n^2
+ (1738288907/180180)*n
+ 1019

A185473 Number of (n+2)X7 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

79743, 594798, 3097348, 12990375, 46410729, 146203201, 416227164, 1090826214, 2669230399, 6166331968, 13566979728, 28628817088, 58271012854, 114931139131, 220496274283, 412754753755, 755824704746, 1356767769574, 2391691228097
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 5 of A185477

Examples

			Some solutions for 4X7
..0..0..0..0..0..0..0....0..0..0..0..0..1..1....0..0..0..0..0..0..1
..0..0..0..0..0..2..2....0..0..0..0..0..1..2....0..0..0..0..1..1..2
..0..0..0..1..1..0..1....0..0..0..0..1..0..0....0..0..0..1..1..1..2
..0..1..1..2..2..1..2....0..0..2..2..1..0..2....0..1..1..2..1..2..1
		

Formula

Empirical: a(n) = (1/2155681382400)*n^17
+ (47/697426329600)*n^16
+ (611/134120448000)*n^15
+ (33559/174356582400)*n^14
+ (189341/33210777600)*n^13
+ (178309/1277337600)*n^12
+ (147904279/44706816000)*n^11
+ (87015563/1219276800)*n^10
+ (11642696389/9754214400)*n^9
+ (69578815777/4877107200)*n^8
+ (3848584871/32256000)*n^7
+ (44384094767/63866880)*n^6
+ (247986427893683/87178291200)*n^5
+ (124742663704661/14529715200)*n^4
+ (1115145293971/58212000)*n^3
+ (2731472131849/100900800)*n^2
+ (9965552297/510510)*n
+ 1735

A185474 Number of (n+2) X 8 0..2 arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

169052, 1433903, 8297059, 37961900, 146203201, 493061605, 1497314456, 4179700035, 10893560939, 26828743607, 63022511852, 142244535949, 310251195820, 656871055669, 1354738985131, 2729104397743, 5381326476837
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2011

Keywords

Comments

Column 6 of A185477.

Examples

			Some solutions for 4 X 8
..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..2
..0..0..0..0..0..0..1..1....0..0..0..0..1..1..2..2....0..0..0..0..0..0..2..2
..0..0..0..0..0..1..0..2....0..0..0..2..1..2..1..2....0..0..0..0..0..1..0..1
..0..0..0..0..2..1..2..1....0..0..0..2..1..2..2..0....0..0..1..1..1..2..1..1
		

Crossrefs

Cf. A185477.

Formula

Empirical: a(n) = (1/212666259456000)*n^19
+ (67/83147710464000)*n^18
+ (12559/194011324416000)*n^17
+ (12833/3923023104000)*n^16
+ (333169/2853107712000)*n^15
+ (196437919/62768369664000)*n^14
+ (1153058911/17118646272000)*n^13
+ (1339332949/1034643456000)*n^12
+ (28852162981/1207084032000)*n^11
+ (350922659539/877879296000)*n^10
+ (4735468557467/877879296000)*n^9
+ (11975048873639/219469824000)*n^8
+ (131882024236729/329204736000)*n^7
+ (7064899018536199/3362591232000)*n^6
+ (1862906706349061/237758976000)*n^5
+ (13955757767803297/653837184000)*n^4
+ (26671169520943/623750400)*n^3
+ (851721864110749/15437822400)*n^2
+ (4258571767339/116396280)*n
+ 2793.

A185475 Number of (n+2)X9 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

336690, 3212372, 20411234, 100908633, 416227164, 1497314456, 4845252741, 14425457557, 40183952539, 106069534256, 267851235385, 651716593546, 1535886293189, 3519099305097, 7860273371841, 17147427400925, 36585315520514
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 7 of A185477

Examples

			Some solutions for 4X9
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..1..2....0..0..0..0..0..0..0..0..1
..0..0..0..0..0..1..1..1..0....0..0..0..0..0..1..1..2..2
..0..0..0..1..2..1..2..2..0....0..0..0..0..1..1..2..1..2
		

Formula

Empirical: a(n) = (1/25519951134720000)*n^21
+ (1/127919554560000)*n^20
+ (1877/2551995113472000)*n^19
+ (101861/2328135892992000)*n^18
+ (10763959/5820339732480000)*n^17
+ (24725641/418455797760000)*n^16
+ (836589317/564915326976000)*n^15
+ (22655691343/753220435968000)*n^14
+ (5887296211331/11298306539520000)*n^13
+ (436620904451/52672757760000)*n^12
+ (3650470717199/28970016768000)*n^11
+ (2036750095277/1170505728000)*n^10
+ (1572848084986607/79009136640000)*n^9
+ (1160407108626427/6584094720000)*n^8
+ (2296534278781759/1975228416000)*n^7
+ (525799308273622787/94152554496000)*n^6
+ (25696337451699745273/1333827855360000)*n^5
+ (2682952836795541619/55576160640000)*n^4
+ (124299364108443341/1407929402880)*n^3
+ (73695052155737/701719200)*n^2
+ (1503827501467/23279256)*n
+ 4299

A185476 Number of (n+2)X10 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

636698, 6763143, 46732687, 247920339, 1090826214, 4179700035, 14425457557, 45945546278, 137459779979, 391292289484, 1069448946626, 2823755277643, 7231630113468, 18008053766767, 43669946969427, 103231986144218
Offset: 1

Views

Author

R. H. Hardin Jan 28 2011

Keywords

Comments

Column 8 of A185477

Examples

			Some solutions for 4X10
..0..0..0..0..0..0..0..0..0..2....0..0..0..0..0..0..0..0..0..2
..0..0..0..0..0..0..0..0..2..2....0..0..0..0..0..0..0..0..1..2
..0..0..0..0..0..1..1..2..1..2....0..0..0..0..0..0..2..2..0..0
..0..0..0..0..0..2..2..2..2..2....0..0..0..0..1..1..2..2..1..1
		

Formula

Empirical: a(n) = (1/3655545353349120000)*n^23
+ (97/1543957043650560000)*n^22
+ (43/6288115959595008)*n^21
+ (37903/80205560709120000)*n^20
+ (4363319/187146308321280000)*n^19
+ (111930887/128047474114560000)*n^18
+ (173896301/6722492391014400)*n^17
+ (999595589/1614043791360000)*n^16
+ (966949557157/79088145776640000)*n^15
+ (2303051708719/11298306539520000)*n^14
+ (762601942063/254936147558400)*n^13
+ (260118396674119/6373403688960000)*n^12
+ (6455418497147533/12167407042560000)*n^11
+ (10938624786824941/1738201006080000)*n^10
+ (15334472267219503/243348140851200)*n^9
+ (54278261336966987/108637562880000)*n^8
+ (9086167557375919/3017710080000)*n^7
+ (11925742307499655463/889218570240000)*n^6
+ (6823870134571712569/157688093122560)*n^5
+ (7908447122576853679/78218300160000)*n^4
+ (17170767258622048961/100380151872000)*n^3
+ (406964817911133233/2151003254400)*n^2
+ (2131730921383/19612560)*n
+ 6377
Showing 1-9 of 9 results.