This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185505 #21 Jan 26 2024 13:22:12 %S A185505 1,11,51,156,375,771,1421,2416,3861,5875,8591,12156,16731,22491,29625, %T A185505 38336,48841,61371,76171,93500,113631,136851,163461,193776,228125, %U A185505 266851,310311,358876,412931,472875,539121,612096,692241,780011,875875,980316,1093831,1216931,1350141,1494000,1649061,1815891,1995071 %N A185505 a(n) = (7*n^4 + 5*n^2)/12. %C A185505 a(n) is the sum of terms in the square [1,n]x[1,n] of the natural number array A000027; e.g., the [1,3]x[1,3] square is %C A185505 1..2..4 %C A185505 3..5..8 %C A185505 6..9..13, %C A185505 so that a(1) = 1, a(2) = 1+2+3+5 = 11, a(3) = 1+2+3+4+5+6+8+9+13 = 51. %C A185505 Partial sums of A063490. - _Omar E. Pol_, Oct 23 2019 %H A185505 G. C. Greubel, <a href="/A185505/b185505.txt">Table of n, a(n) for n = 1..1000</a> %H A185505 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A185505 a(n) = (7*n^4 + 5*n^2)/12. %F A185505 From _Chai Wah Wu_, Sep 05 2016: (Start) %F A185505 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. %F A185505 G.f.: x*(1 + x)*(1 + 5*x + x^2)/(1 - x)^5. (End) %F A185505 E.g.f.: (1/12)*x*(12 + 54*x + 42*x^2 + 7*x^3)*exp(x). - _G. C. Greubel_, Jul 07 2017 %e A185505 a(1)=(7+5)/12, a(2)=(7*16+5*4)/12. %t A185505 Table[(7*n^4+5*n^2)/12, {n,1,60}] %t A185505 LinearRecurrence[{5,-10,10,-5,1},{1,11,51,156,375},50] (* _Harvey P. Dale_, Jan 26 2024 *) %o A185505 (PARI) a(n)=(7*n^4+5*n^2)/12 \\ _Charles R Greathouse IV_, Sep 05 2016 %Y A185505 Cf. A000027, A063490. %K A185505 nonn,easy %O A185505 1,2 %A A185505 _Clark Kimberling_, Jan 29 2011