A185507 Second accumulation array, T, of the natural number array A000027, by antidiagonals.
1, 4, 5, 11, 19, 15, 25, 49, 55, 35, 50, 105, 136, 125, 70, 91, 200, 280, 300, 245, 126, 154, 350, 515, 600, 575, 434, 210, 246, 574, 875, 1075, 1125, 1001, 714, 330, 375, 894, 1400, 1785, 1975, 1925, 1624, 1110, 495, 550, 1335, 2136, 2800, 3220, 3325, 3080, 2496, 1650, 715, 781, 1925, 3135, 4200, 4970, 5341, 5250, 4680, 3675, 2365, 1001, 1079, 2695, 4455, 6075, 7350, 8134, 8330, 7890, 6825, 5225, 3289, 1365, 1456, 3679, 6160, 8525, 10500, 11886, 12544, 12390, 11400, 9625, 7216, 4459, 1820, 1925, 4914, 8320, 11660
Offset: 1
Examples
Northwest corner: 1, 4, 11, 25, 50, 91, 154 5, 19, 49, 105, 200, 350, 574 15, 55, 136, 280, 515, 875, 1400 35, 125, 300, 600, 1075, 1785, 2800 70, 245, 575, 1125, 1975, 3220, 4970
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
g[n_,k_]:=k*n(k+1)(n+1)(3n^2+(4k+11)n+3k^2-k+16)/144; TableForm[Table[g[n,k],{n,1,10},{k,1,15}]] Table[g[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Formula
T(n,k) = k*n*(k+1)*(n+1)*(3*n^2 + (4*k+11)*n + 3*k^2 - k + 16)/144.
Comments