cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185507 Second accumulation array, T, of the natural number array A000027, by antidiagonals.

Original entry on oeis.org

1, 4, 5, 11, 19, 15, 25, 49, 55, 35, 50, 105, 136, 125, 70, 91, 200, 280, 300, 245, 126, 154, 350, 515, 600, 575, 434, 210, 246, 574, 875, 1075, 1125, 1001, 714, 330, 375, 894, 1400, 1785, 1975, 1925, 1624, 1110, 495, 550, 1335, 2136, 2800, 3220, 3325, 3080, 2496, 1650, 715, 781, 1925, 3135, 4200, 4970, 5341, 5250, 4680, 3675, 2365, 1001, 1079, 2695, 4455, 6075, 7350, 8134, 8330, 7890, 6825, 5225, 3289, 1365, 1456, 3679, 6160, 8525, 10500, 11886, 12544, 12390, 11400, 9625, 7216, 4459, 1820, 1925, 4914, 8320, 11660
Offset: 1

Views

Author

Clark Kimberling, Jan 29 2011

Keywords

Comments

See A144112 (and A185506) for the definition of accumulation array (aa).
Sequence is aa(aa(A000027)).

Examples

			Northwest corner:
   1,   4,  11,   25,   50,   91,  154
   5,  19,  49,  105,  200,  350,  574
  15,  55, 136,  280,  515,  875, 1400
  35, 125, 300,  600, 1075, 1785, 2800
  70, 245, 575, 1125, 1975, 3220, 4970
		

Crossrefs

Cf. A006522 (row 1), A000332 (column 1).

Programs

  • Mathematica
    g[n_,k_]:=k*n(k+1)(n+1)(3n^2+(4k+11)n+3k^2-k+16)/144;
    TableForm[Table[g[n,k],{n,1,10},{k,1,15}]]
    Table[g[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k*n*(k+1)*(n+1)*(3*n^2 + (4*k+11)*n + 3*k^2 - k + 16)/144.