A185509 Fourth accumulation array, T, of the natural number array A000027, by antidiagonals.
1, 6, 7, 22, 41, 28, 63, 146, 161, 84, 154, 406, 561, 476, 210, 336, 966, 1526, 1631, 1176, 462, 672, 2058, 3556, 4361, 3976, 2562, 924, 1254, 4032, 7434, 9996, 10486, 8568, 5082, 1716, 2211, 7392, 14322, 20580, 23716, 22344, 16842, 9372, 3003, 3718, 12837, 25872, 39102, 48216, 49980, 43512, 30822, 16302, 5005, 6006, 21307, 44352, 69762, 90552, 100548, 96432, 79002, 53262, 27027, 8008, 9373, 34034, 72787, 118272, 159852
Offset: 1
Examples
Northwest corner: 1.....6....22....63...154 7....41...146...406...966 28..161...561..1526..3556 84..476..1631..4361..9996
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
u[n_,k_]:=k(k+1)(k+2)(k+3)n(n+1)(n+2)(n+3)(5n^2+(6k+39)n+5k^2+9k+86)/86400 TableForm[Table[u[n,k],{n,1,10},{k,1,15}]] Table[u[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Formula
T(n,k) = F*(5*n^2 + (6*k + 39)*n + 5*k^2 + 9*k + 86), where
F = k*(k+1)*(k+2)*(k+3)*n*(n+1)*(n+2)*(n+3)/86400.
Comments