A185561 1/4 the number of n X 3 0..3 arrays with no element equal both to the element above and to the element to its left.
16, 900, 50580, 2842560, 159749820, 8977824540, 504547256880, 28355191537860, 1593541291098420, 89555869973406240, 5032975230384726780, 282849573983126145660, 15895941831670877597520, 893340453575999346503940
Offset: 1
Keywords
Examples
Some solutions for 5 X 3 with a(1,1)=0: ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..2..2....0..2..0....0..2..0....0..2..2....0..2..0....0..2..0....0..2..0 ..2..0..1....0..1..3....0..2..1....0..3..2....0..1..0....0..3..2....0..2..3 ..0..1..3....2..2..2....1..2..2....3..0..3....3..2..3....0..3..3....0..2..3 ..3..3..0....1..2..0....3..3..3....0..3..1....0..1..0....3..1..0....1..1..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A185567.
Formula
Empirical: a(n) = 57*a(n-1) - 45*a(n-2).
Empirical g.f.: 4*x*(4 - 3*x) / (1 - 57*x + 45*x^2). - Colin Barker, Apr 16 2018
Comments