cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185579 Decimal expansion of Sum_{m,n,p = -infinity..infinity} (-1)^m/sqrt(m^2 + (n-1/2)^2 + (p-1/2)^2).

Original entry on oeis.org

1, 5, 4, 0, 1, 7, 0, 9, 0, 1, 8, 5, 5, 5, 4, 3, 6, 1, 7, 4, 3, 6, 4, 6, 6, 6, 6, 3, 8, 6, 4, 8, 0, 3, 9, 7, 8, 4, 2, 9, 6, 2, 7, 5, 6, 4, 1, 5, 6, 1, 4, 5, 9, 4, 8, 4, 2, 1, 8, 9, 5, 5, 2, 9, 4, 6, 0, 3, 7, 9, 1, 5, 8, 7, 6, 0, 1, 2, 7, 6, 9, 7, 9, 2, 0, 7, 4, 3, 0, 7, 6, 9, 2, 2, 7, 8, 9, 1, 3, 0, 2, 5, 3, 8, 5
Offset: 1

Views

Author

R. J. Mathar, Jan 31 2011

Keywords

Examples

			1.5401709018555436174364666638648...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; Clear[f]; f[n_, p_] := f[n, p] = (d = Sqrt[n^2 + (p - 1/2)^2]; (-1)^n*(Csch[d*Pi]/d) // N[#, digits+10]&); f[m_] := f[m] = 2*Log[1 + Sqrt[2]] + 4*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits+10]& // First; f[0]; f[m = 10]; While[f[m] != f[m-10], Print[m]; m = m+10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 21 2013 *)

Formula

Equals 2*log(1+sqrt(2)) + 4*Sum_{n>=1, p>=1} (-1)^n*cosech(d*Pi)/d where d = sqrt(n^2 + (p-1/2)^2).

Extensions

More terms from Jean-François Alcover, Feb 21 2013