cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185582 Decimal expansion of Sum_{m,n,p = -infinity..infinity} 4*(-1)^(m+p)/sqrt(m^2 + (2n-1/2)^2 + (2p-1/2)^2).

Original entry on oeis.org

3, 6, 3, 4, 8, 9, 9, 0, 1, 1, 0, 4, 9, 1, 4, 8, 7, 1, 1, 3, 6, 8, 0, 4, 2, 9, 9, 2, 0, 0, 7, 8, 1, 5, 3, 2, 7, 9, 9, 0, 1, 4, 4, 3, 0, 9, 3, 5, 5, 3, 4, 0, 1, 8, 0, 6, 2, 1, 3, 0, 9, 1, 5, 2, 6, 9, 1, 2, 1, 5, 4, 8, 4, 1, 7, 8, 4, 5, 8, 8, 7, 2, 9, 1, 0, 0, 9, 3, 7, 4, 5, 0, 9, 4, 7, 6, 5, 1, 2, 5, 8, 0, 8, 9, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 31 2011

Keywords

Comments

The defining equation (3.10i) on page 1738 of the 1975 paper has a typo (m for n).
The value in Table 4 (page 1742, column h(2s)) seems to have two digits swapped.

Examples

			3.634899011049148711368042992007815327990...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; Clear[f]; f[n_, p_] := f[n, p] = (d = Sqrt[2 n^2 + (p - 1/2)^2]; (Csch[d*Pi]/d) // N[#, digits + 10] &); f[m_] := f[m] = 4 Log[1 + Sqrt[2]] + 8*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits + 10] & // First; f[0]; f[m = 10]; While[ f[m] != f[m - 10], Print[m]; m = m + 10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 21 2013 *)

Formula

Equals 4*log(1+sqrt(2)) + 8*Sum_{n>=1, p>=1} cosech(d*Pi)/d where d = sqrt(2*n^2 + (p-1/2)^2).

Extensions

More terms from Jean-François Alcover, Feb 21 2013