cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185646 Square array A(n,m), n>=0, m>=0, read by antidiagonals, where column m is the expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))).

This page as a plain text file.
%I A185646 #30 Dec 23 2024 14:53:42
%S A185646 1,1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,2,1,-1,1,1,1,2,2,1,0,1,1,1,2,3,3,
%T A185646 1,0,1,1,1,2,3,4,5,1,-1,1,1,1,2,3,5,7,6,1,0,1,1,1,2,3,5,8,11,10,1,0,1,
%U A185646 1,1,2,3,5,9,13,17,14,1,0,1,1,1,2,3,5,9,14,22,28,21,1,0
%N A185646 Square array A(n,m), n>=0, m>=0, read by antidiagonals, where column m is the expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))).
%H A185646 Alois P. Heinz, <a href="/A185646/b185646.txt">Antidiagonals n = 0..140, flattened</a>
%H A185646 Paul D. Hanna et al., <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-July/011445.html">Formula Needed for a Family of Continued Fractions</a> and follow-up messages on the SeqFan list, Jul 28 2013
%e A185646 Square array A(n,m) begins:
%e A185646    1,  1,  1,  1,  1,  1,  1,  1,  1, ...
%e A185646    1,  1,  1,  1,  1,  1,  1,  1,  1, ...
%e A185646    0,  1,  1,  1,  1,  1,  1,  1,  1, ...
%e A185646    0,  1,  2,  2,  2,  2,  2,  2,  2, ...
%e A185646    0,  1,  2,  3,  3,  3,  3,  3,  3, ...
%e A185646   -1,  1,  3,  4,  5,  5,  5,  5,  5, ...
%e A185646    0,  1,  5,  7,  8,  9,  9,  9,  9, ...
%e A185646    0,  1,  6, 11, 13, 14, 15, 15, 15, ...
%e A185646   -1,  1, 10, 17, 22, 24, 25, 26, 26, ...
%t A185646 nMax = 12; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A = Table[col[m][[1 ;; nMax + 1]], {m, 0, nMax}] // Transpose; a[n_ /; 0 <= n <= nMax, m_ /; 0 <= m <= nMax] := With[{n1 = n + 1, m1 = m + 1}, A[[n1, m1]]]; Table[a[n - m, m], {n, 0, nMax}, {m, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Nov 03 2016 *)
%Y A185646 Columns m=0-10 give: A143064, A000012, A227360, A173173(n+1), A227374, A227375, A228646, A228644, A185648, A228645, A185649.
%Y A185646 Diagonal gives: A005169.
%K A185646 sign,tabl
%O A185646 0,19
%A A185646 _Alois P. Heinz_, Aug 29 2013