cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185649 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=10.

This page as a plain text file.
%I A185649 #17 Dec 23 2024 14:53:42
%S A185649 1,1,1,2,3,5,9,15,26,45,78,135,233,404,700,1213,2103,3645,6319,10955,
%T A185649 18992,32927,57085,98970,171588,297489,515771,894217,1550350,2687923,
%U A185649 4660196,8079634,14008102,24286615,42107043,73003306,126569874,219441205,380457391
%N A185649 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=10.
%H A185649 Alois P. Heinz, <a href="/A185649/b185649.txt">Table of n, a(n) for n = 0..750</a>
%H A185649 Paul D. Hanna et al., <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-July/011445.html">Formula Needed for a Family of Continued Fractions</a> and follow-up messages on the SeqFan list, Jul 28 2013
%t A185649 nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A185649 = col[10][[1 ;; nMax]] (* _Jean-François Alcover_, Nov 03 2016 *)
%Y A185649 Column m=10 of A185646.
%K A185649 nonn
%O A185649 0,4
%A A185649 _Alois P. Heinz_, Aug 29 2013