This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185650 #31 Nov 28 2022 09:59:56 %S A185650 1,2,8,39,214,1268,7949,51901,349703,2415348,17020341,121939535, %T A185650 885841162,6511874216,48359860685,362343773669,2736184763500, %U A185650 20805175635077,159174733727167,1224557214545788,9467861087020239,73534456468877012,573484090227222260 %N A185650 a(n) is the number of rooted trees with 2n vertices n of whom are leaves. %H A185650 Andrew Howroyd, <a href="/A185650/b185650.txt">Table of n, a(n) for n = 1..200</a> %H A185650 V. M. Kharlamov and S. Yu. Orevkov, <a href="http://arxiv.org/abs/math/0301245">The number of trees half of whose vertices are leaves and asymptotic enumeration of plane real algebraic curves</a>, arXiv:math/0301245 [math.AG], 2003; J. of Combinatorial Theory, Ser. A, 105 (2004), 127-142. %H A185650 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %e A185650 From _Gus Wiseman_, Nov 27 2022: (Start) %e A185650 The a(1) = 1 through a(3) = 8 rooted trees: %e A185650 (o) ((oo)) (((ooo))) %e A185650 (o(o)) ((o)(oo)) %e A185650 ((o(oo))) %e A185650 ((oo(o))) %e A185650 (o((oo))) %e A185650 (o(o)(o)) %e A185650 (o(o(o))) %e A185650 (oo((o))) %e A185650 (End) %t A185650 terms = 23; %t A185650 m = 2 terms; %t A185650 T[_, _] = 0; %t A185650 Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}]; %t A185650 cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x]; %t A185650 Table[cc[[2n+1, n+1]], {n, 1, terms}] (* _Jean-François Alcover_, Sep 14 2018 *) %t A185650 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A185650 Table[Length[Select[art[n],Count[#,{},{-2}]==n/2&]],{n,2,10,2}] (* _Gus Wiseman_, Nov 27 2022 *) %o A185650 (PARI) \\ here R is A055277 as vector of polynomials %o A185650 R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)}; %o A185650 {my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k],k))} \\ _Andrew Howroyd_, May 21 2018 %Y A185650 The ordered version is A000891, ranked by A358579. %Y A185650 This is the central column of A055277. %Y A185650 These trees are ranked by A358578. %Y A185650 For height = internals we have A358587. %Y A185650 Square trees are counted by A358589. %Y A185650 A000081 counts rooted trees, ordered A000108. %Y A185650 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A185650 A358575 counts rooted trees by nodes and internals, ordered A090181. %Y A185650 Cf. A034781, A109129, A358580, A358581-A358584, A358591. %K A185650 nonn %O A185650 1,2 %A A185650 _Stepan Orevkov_, Aug 29 2013 %E A185650 Terms a(20) and beyond from _Andrew Howroyd_, May 21 2018