This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185673 #30 Feb 16 2025 08:33:13 %S A185673 1,259,518,777,3402,3645,3726,7045,7243,12683,16441,13723,13792,21631, %T A185673 20202,23002,24135,27162,28870,28215,33230,39629,36510,41561,43241, %U A185673 29563,47401,41310,47150,47790,56749,43962,48750,62681,65069,50442 %N A185673 Least number k having n representations as the sum of the minimal number of biquadrates A002377(k). %C A185673 This sequence is not monotonically increasing: a(21)=33230 > a(26)=29563. %H A185673 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a>. %e A185673 a(1) = 1 since 1 = 1^4 (1 way with minimal representation) %e A185673 a(2) = 259 since 259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 (2 ways with minimal representation) %e A185673 a(3) = 518 since 518 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 (3 ways with minimal representation) %t A185673 t=Table[r=PowersRepresentations[n,19,4]; Sort[Tally[19-Count[#,0]&/@r]][[1,2]], {n,800}]; u=Union[t]; c=Complement[Range[Max[u]],u]; If[c=={}, mx=u[[-1]], mx=c[[1]]-1]; Flatten[Table[Position[t,n,1,1],{n,mx}]] %Y A185673 Cf. A002377. %K A185673 nonn %O A185673 1,2 %A A185673 _Martin Renner_, Feb 09 2011 %E A185673 a(10)-a(36) from _Alois P. Heinz_, Feb 10 2011