This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185675 #30 Jul 11 2017 04:52:24 %S A185675 1,2,1,3,3,1,5,7,4,1,8,17,12,5,1,13,43,35,18,6,1,21,116,103,60,25,7,1, %T A185675 34,333,312,196,93,33,8,1,55,1010,976,643,331,135,42,9,1,89,3202,3147, %U A185675 2137,1161,518,187,52,10,1,144,10504,10415,7213,4066,1929,768,250,63,11,1 %N A185675 Riordan array ( (1+x)/(1-x-x^2), x*A000108(x) ). %H A185675 G. C. Greubel, <a href="/A185675/b185675.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A185675 E. Deutsch, L. Ferrari and S. Rinaldi, <a href="http://arxiv.org/abs/math/0702638">Production Matrices and Riordan arrays</a>, arXiv:math/0702638 [math.CO], 2007. %F A185675 R(n,k) = k*Sum_{i=0..n-k}(Sum_{j=1..i+1}binomial(j,i+1-j))*binomial(2*(n-i)-k-1,n-i-1)/(n-i), k>0. %F A185675 R(n,0) = A000045(n+2). %e A185675 Triangle begins: %e A185675 1; %e A185675 2, 1; %e A185675 3, 3, 1; %e A185675 5, 7, 4, 1; %e A185675 8, 17, 12, 5, 1; %e A185675 13, 43, 35, 18, 6, 1; %e A185675 21, 116, 103, 60, 25, 7, 1; %e A185675 34, 333, 312, 196, 93, 33, 8, 1; %e A185675 Production matrix begins: %e A185675 2, 1; %e A185675 -1, 1, 1; %e A185675 2, 1, 1, 1; %e A185675 -3, 1, 1, 1, 1; %e A185675 5, 1, 1, 1, 1, 1; %e A185675 -8, 1, 1, 1, 1, 1, 1; %e A185675 13, 1, 1, 1, 1, 1, 1, 1; %e A185675 -21, 1, 1, 1, 1, 1, 1, 1, 1; %e A185675 ... _Philippe Deléham_, Sep 21 2014 %p A185675 A185675 := proc(n,k) if n = k then 1; elif k = 0 then combinat[fibonacci](n+2) ; else k*add(1/(n-i)*add(binomial(j,i+1-j)*binomial(2*n-2*i-k-1,n-i-1), j=1..i+1), i=0..n-k) ; end if; end proc: %p A185675 seq(seq(A185675(n,k),k=0..n),n=0..15) ; # _R. J. Mathar_, Feb 10 2011 %t A185675 r[n_, k_] := k*Sum[Binomial[2*(n - i) - k - 1, n - i - 1]*Fibonacci[i + 2]/(n - i), {i, 0, n - k}]; r[n_, 0] := Fibonacci[n + 2]; r[n_, n_] := 1; Table[r[n, k], {n, 0, 3}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 21 2013; modified by _G. C. Greubel_, Jul 10 2017 *) %K A185675 nonn,tabl %O A185675 0,2 %A A185675 _Vladimir Kruchinin_, Feb 09 2011