This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185717 #25 Feb 16 2025 08:33:13 %S A185717 1,3,6,8,9,12,14,18,18,20,24,24,31,27,30,32,36,48,38,42,42,44,54,48, %T A185717 57,54,54,72,60,60,62,72,84,68,72,72,74,93,96,80,81,84,108,90,90,112, %U A185717 96,120,98,108,102,104,144,108,110,114,114,144,126,144,133,126,156,128 %N A185717 Expansion of q^(-1) * c(q^2) * (c(q) - c(q^4)) / 9 in powers of q^2 where c() is a cubic AGM theta function. %C A185717 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A185717 G. C. Greubel, <a href="/A185717/b185717.txt">Table of n, a(n) for n = 0..1000</a> %H A185717 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019. %H A185717 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>. %F A185717 Expansion of phi(-x^3)^4 / (chi(-x) * chi(-x^3))^3 in powers of x where phi(), chi() are Ramanujan theta functions. %F A185717 Euler transform of period 6 sequence [ 3, 0, -2, 0, 3, -4, ...]. %F A185717 a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 3^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3. %F A185717 G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A118271. %F A185717 a(3*n + 1) = 3 * a(n). A078708(2*n + 1) = A121443(2*n + 1) = A124449(2*n + 1). %F A185717 Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/9 = 1.0966227... (A100044). - _Amiram Eldar_, Dec 28 2023 %e A185717 1 + 3*x + 6*x^2 + 8*x^3 + 9*x^4 + 12*x^5 + 14*x^6 + 18*x^7 + 18*x^8 + ... %e A185717 q + 3*q^3 + 6*q^5 + 8*q^7 + 9*q^9 + 12*q^11 + 14*q^13 + 18*q^15 + ... %t A185717 A185717[n_] := SeriesCoefficient[(QPochhammer[q^3, q^3]/QPochhammer[-q^3, q^3])^4*(1/(QPochhammer[q, q^2]*QPochhammer[q^3, q^6])^3), {q, 0, n}]; %t A185717 Table[A185717[n], {n, 0, 50}] (* _G. C. Greubel_, Jul 10 2017 *) %o A185717 (PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, if( (n/d) % 3, 1, 0) * d))} %o A185717 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^5 / (eta(x + A)^3 * eta(x^6 + A)), n))} %Y A185717 Cf. A078708, A100044, A118271, A121443, A124449. %Y A185717 Cf. A000122, A000700, A010054, A121373. %K A185717 nonn,easy %O A185717 0,2 %A A185717 _Michael Somos_, Feb 10 2011