cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185732 Accumulation array of the polygonal number array (A086270), by antidiagonals.

This page as a plain text file.
%I A185732 #14 Jul 12 2017 03:18:06
%S A185732 1,4,2,10,9,3,20,24,15,4,35,50,42,22,5,56,90,90,64,30,6,84,147,165,
%T A185732 140,90,39,7,120,224,273,260,200,120,49,8,165,324,420,434,375,270,154,
%U A185732 60,9,220,450,612,672,630,510,350,192,72,10,286,605,855,984,980,861,665,440,234,85,11,364,792,1155,1380,1440,1344,1127,840,540,280,99,12,455,1014,1518,1870,2025,1980,1764,1428,1035,650,330,114,13,560,1274,1950,2464,2750,2790,2604,2240
%N A185732 Accumulation array of the polygonal number array (A086270), by antidiagonals.
%C A185732 This is the (first) accumulation array of A086270; the second is A185733.  See A144112 for the definition of accumulation array.
%H A185732 G. C. Greubel, <a href="/A185732/b185732.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F A185732 T(n,k) = k*(k+1)*n*(n+1)*(k*n-n+k+5)/12.
%e A185732 Northwest corner:
%e A185732 1....4....10...20...35
%e A185732 2....9....24...50...90
%e A185732 3....15...42...90...165
%e A185732 4....22...64...140..260
%e A185732 5....30...90...200..375
%t A185732 f[n_,k_]:=k+n*k(k-1)/2;
%t A185732 TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* Array A086270 *)
%t A185732 Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A086270 *)
%t A185732 s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* acc. arr. of {f(n,k)} *)
%t A185732 Factor[s[n,k]]  (* formula for A185732 *)
%t A185732 TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* acc. arr. A185732 *)
%t A185732 Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A185732 *)
%Y A185732 Rows 1 to 5: A000292, A006002, A059270, A177814, 5*A002411.
%Y A185732 Columns 1 to 4: A000027, A055999, A067728, 10*A000096.
%Y A185732 Cf. A144112, A086270, A185732.
%K A185732 nonn,tabl
%O A185732 1,2
%A A185732 _Clark Kimberling_, Feb 01 2011